Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Ba Đình Hà Nội

Nội dung Đề KSCL lớp 9 môn Toán năm 2020 2021 phòng GD ĐT Ba Đình Hà Nội Bản PDF - Nội dung bài viết Đề KSCL Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội Đề KSCL Toán lớp 9 năm 2020 – 2021 của phòng GD&ĐT Ba Đình – Hà Nội bao gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 120 phút. Kỳ thi đã diễn ra vào ngày 29 tháng 04 năm 2021. Trích dẫn một số bài toán từ đề KSCL Toán lớp 9 năm 2020 – 2021 phòng GD&ĐT Ba Đình – Hà Nội: Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai người thợ cùng sơn một ngôi nhà, mất 4 ngày thì xong việc. Hai người cùng làm trong 1 ngày thì người thứ nhất có việc bận nên một mình người thứ hai làm trong 6 ngày nữa thì mới xong công việc. Hỏi mỗi người làm việc một mình thì sau bao lâu xong công việc? Cho một hình trụ có bán kính đáy là 3cm. Biết diện tích xung quanh của hình trụ là 907 cm2. Tính thể tích của hình trụ. Cho đường tròn (O) đường kính AB. Qua trung điểm C của OA vẽ dây DE vuông góc với OA. Gọi K là điểm tùy ý trên cung nhỏ BD (K khác B D). H là giao điểm của AK và DE. a) Chứng minh tứ giác BCHK là tứ giác nội tiếp. b) Chứng minh AH.AK = AD2. c) Lấy điểm F trên đoạn KE sao cho KF = KB. Chứng minh tam giác KFB là tam giác đều. Xác định vị trí của điểm K trên cung nhỏ BD để tổng KD + KB + KE đạt giá trị lớn nhất.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Cầu Giấy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Cầu Giấy, quận Cầu Giấy, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Cầu Giấy – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Bạn Bình mua một quyển từ điển và một món đồ chơi với tổng giá tiền theo niêm yết là 750 nghìn đồng. Vì Bình mua đúng dịp cửa hàng có chương trình khuyến mãi nên khi thanh toán giá quyển từ điển được giảm 20%, giá món đồ chơi được giảm 10%. Do đó Bình chỉ phải trả 630 nghìn đồng. Hỏi Bình mua mỗi thứ giá bao nhiêu tiền. + Một bồn nước inox có dạng hình trụ chiều cao 2m, bán kính đáy 0,3m. Hỏi bồn nước này đựng đầy được bao nhiêu lít nước (lấy pi = 3,14). + Cho đường tròn (O) đường kính AB. C là một điểm thuộc đường tròn sao cho AC < BC. Lấy điểm I thuộc BC (I khác B và C). AI cắt đường tròn tại điểm thứ hai là D. Gọi H là hình chiếu của I trên AB. a) Chứng minh tứ giác BDIH nội tiếp; b) Đường thẳng CH cắt đường tròn tại điểm thứ hai là K. Chứng minh rằng BI.BC = BH.BA và IH // DK; c) Kẻ KM vuông góc với AC tại M, KN vuông góc với BC tại N. Chứng minh các đường thẳng AB, DK và MN đồng quy.
Đề khảo sát Toán 9 lần 3 năm 2021 - 2022 trường THCS Thanh Quan - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 lần 3 năm học 2021 – 2022 trường THCS Thanh Quan, quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 08 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2021 – 2022 trường THCS Thanh Quan – Hà Nội : + Giải bài toán bằng cách lập phương trình và hệ phương trình: Hai xí nghiệp cùng may một loại áo. Nếu xí nghiệp thứ nhất may trong 5 ngày và xí nghiệp thứ hai may trong 3 ngày thì cả hai xí nghiệp may được 2620 chiếc áo. Biết rằng trong một ngày xí nghiệp thứ hai may nhiều hơn xí nghiệp thứ nhất 20 chiếc áo. Hỏi mỗi xí nghiệp trong một ngày may được bao nhiêu chiếc áo? + Bạn Nam dùng giấy bìa để làm một chiếc mũ sinh nhật hình nón có chiều cao 16cm, đường kính đáy mũ 24 cm. Tính diện tích giấy bìa vừa đủ để bạn hoàn thành chiếc mũ đó? (Coi phần bìa dành cho các mép nối là không đáng kể). + Trong mặt phẳng toạ độ Oxy cho parabol 2 P y x và đường thẳng 1 d y mx a) Tìm m để parabol (P) và đường thẳng (d) cùng đi qua điểm có hoành độ x = 2 b) Chứng minh đường thẳng (d) luôn cắt parabol (P) tại hai điểm phân biệt với mọi m. Gọi 1 2 x x là các hoành độ giao điểm của (d) và (P) tìm m để 2 2 1 x x 1 3.
Đề khảo sát Toán 9 năm 2021 - 2022 trường THCS Ngô Sĩ Liên - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THCS Ngô Sĩ Liên, quận Hoàn Kiếm, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 09 tháng 06 năm 2022.
Đề khảo sát chất lượng Toán 9 năm 2022 trường THCS Ngọc Thụy - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 năm 2022 trường THCS Ngọc Thụy, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào sáng thứ Tư ngày 08 tháng 06 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2022 trường THCS Ngọc Thụy – Hà Nội : + Cho hai biểu thức: A và B. 1) Tính giá trị biểu thức A khi x = 1. 2) Rút gọn biểu thức B. 3) Cho biết P = A.B. Tìm x để 2(x + 1).P – x2 = 7. + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hội trường của trường THCS Ngọc Thụy có đúng 250 ghế được chia đều vào các dãy. Nhằm giãn cách xã hội, trong đợt phòng chống dịch COVID-19 để mỗi dãy bớt đi 5 ghế mà số ghế trong hội trường không đổi thì nhà trường phải kê thêm 25 dãy như thế nữa. Hỏi ban đầu, số ghế trong hội trường được chia thành bao nhiêu dãy? + Một chiếc xô có dạng hình nón cụt có chiều cao là 24cm, đường kính đáy lớn là 20cm, đường kính đáy nhỏ là 12cm. Hỏi chiếc xô có thể chứa được nhiều nhất bao nhiêu lít nước?