Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hệ phương trình ôn thi vào lớp 10

Tài liệu gồm 108 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề hệ phương trình, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. HỆ ĐỐI XỨNG LOẠI 1 Một hệ phương trình ẩn x, y được gọi là hệ phương trình đối xứng loại 1 nếu mỗi phương trình ta đổi vai trò của x, y cho nhau thì phương trình đó không đổi. Tính chất: Nếu x y 0 0 là một nghiệm thì hệ y x 0 0 cũng là nghiệm. Cách giải: Đặt S xy P xy điều kiện 2 S P 4 quy hệ phương trình về 2 ẩn S P. HỆ ĐỐI XỨNG LOẠI 2 Một hệ phương trình 2 ẩn x y được gọi là đối xứng loại 2 nếu trong hệ phương trình ta đổi vai trò x y cho nhau thì phương trình trở thành phương trình kia. Tính chất: Nếu x y 0 0 là 1 nghiệm của hệ thì y x 0 0 cũng là nghiệm. Phương pháp giải: Trừ vế với vế hai phương trình của hệ ta được một phương trình có dạng 0 x y x y f xy f xy. HỆ CÓ YẾU TỐ ĐẲNG CẤP ĐẲNG CẤP Là những hệ chứa các phương trình đẳng cấp. Hoặc các phương trình của hệ khi nhân hoặc chia cho nhau thì tạo ra phương trình đẳng cấp. Một số hệ phương trình tính đẳng cấp được giấu trong các biểu thức chứa căn đòi hỏi người giải cần tinh ý để phát hiện. Phương pháp chung để giải hệ dạng này là: Từ các phương trình của hệ ta nhân hoặc chia cho nhau để tạo ra phương trình đẳng cấp bậc n. PHƯƠNG PHÁP BIẾN ĐỔI TƯƠNG ĐƯƠNG Biến đổi tương đương là phương pháp giải hệ dựa trên những kỹ thuật cơ bản như: Thế / biến đổi các phương trình về dạng tích,cộng trừ các phương trình trong hệ để tạo ra phương trình hệ quả có dạng đặc biệt. PHƯƠNG PHÁP ĐẶT ẨN PHỤ Đặt ẩn phụ là việc chọn các biểu thức f xy gxy trong hệ phương trình để đặt thành các ẩn phụ mới làm đơn giản cấu trúc của phương trình, hệ phương trình. Qua đó tạo thành các hệ phương trình mới đơn giản hơn, hay quy về các dạng hệ quen thuộc như đối xứng, đẳng cấp. Để tạo ra ẩn phụ người giải cần xử lý linh hoạt các phương trình trong hệ thông qua các kỹ thuật: Nhóm nhân tử chung, chia các phương trình theo những số hạng có sẵn, nhóm dựa vào các hằng đẳng thức, đối biến theo đặc thù phương trình. PHƯƠNG PHÁP ĐƯA VỀ HẰNG ĐẲNG THỨC Điểm mấu chốt khi giải hệ bằng phương pháp biến đổi theo các hằng đẳng thức. KHI TRONG HỆ CÓ CHỨA PHƯƠNG TRÌNH BẬC 2 THEO ẨN x HOẶC y Khi trong hệ phương trình có chứa phương trình bậc hai theo ẩn x hoặc y ta có thể nghỉ đến các hướng xử lý như sau: Nếu ∆ chẵn, ta giải x theo y rồi thế vào phương trình còn lại của hệ để giải tiếp. Nếu ∆ không chẵn ta thường xử lý theo cách: Cộng hoặc trừ các phương trình của hệ để tạo được phương trình bậc hai có ∆ chẵn hoặc tạo thành các hằng đẳng thức. Dùng điều kiện ∆ ≥ 0 để tìm miền giá trị của biến x y. Sau đó đánh giá phương trình còn lại trên miền giá trị x y vừa tìm được. PHƯƠNG PHÁP ĐÁNH GIÁ Để giải được hệ phương trình bằng phương pháp đánh giá ta cần nắm chắc các bất đẳng thức cơ bản như: Cauchy, Bunhicopxki, các phép biến đổi trung gian giữa các bất đẳng thức, qua đó để đánh giá tìm ra quan hệ x y. Ngoài ra ta cũng có thể dùng hàm số để tìm GTLN – GTNN từ đó có hướng đánh giá, so sánh phù hợp.

Nguồn: toanmath.com

Đọc Sách

Tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 - 2019
Tài liệu gồm 119 trang được biên soạn bởi các tác giả Tạ Công Hoàng và Nguyễn Đăng Khoa, tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 – 2019, đây là dạng toán không thể thiếu trong các đề thi vào lớp 10 môn Toán và chiếm một tỉ lệ điểm số khá đáng kể và thường được sử dụng để phân loại các em học sinh trung bình với khá – giỏi. Các bài toán được vẽ hình, phân tích và giải chi tiết nhằm giúp học sinh hiểu sâu và nắm được các kỹ thuật giải đối với bài toán này. Trích dẫn tài liệu tổng hợp các bài toán hình học phẳng ôn thi vào lớp 10 THPT năm học 2018 – 2019 : + (Đề thi Phổ thông Năng khiếu 2000) Cho góc xAy = 90◦ và đường tròn (O) tiếp xúc với Ax và Ay lần lượt tại P, Q. Đường thẳng (d) là một tiếp tuyến thay đổi của (O). Gọi a, p, q là khoảng cách từ A, P, Q xuống đường thẳng (d). Chứng minh: a^2/pq không đổi khi (d) dịch chuyển. Khẳng định trên còn đúng không khi xAy d không phải góc vuông. [ads] + (Đề xuất bởi BunhiChySchwarz) Cho đường tròn (O), từ một điểm A nằm ngoài (O) kẻ hai tiếp tuyến AB, AC. Kẻ đường kính BD, lấy F là trung điểm OB. Qua A kẻ đường thẳng vuông góc với AB cắt OC tại E. Chứng minh: AD ⊥ EF. + (Đề thi Bà Rịa – Vũng Tàu 2017 – 2018) Cho tam giác ABC nội tiếp (O), (I) là đường tròn nội tiếp của tam giác ABC. AI cắt (O) tại A và J. E là trung điểm của BC. Tiếp tuyến tại B và C cắt nhau tại S. AS cắt (O) tại A và D. DI cắt (O) tại D và M. Chứng minh MJ chia đôi IE.
Tổng ôn tập Toán THCS thi vào lớp 10
Cuốn sách Tổng ôn tập Toán THCS thi vào lớp 10 gồm 193 trang hệ thống các chủ đề Toán học chính từ lớp 6 đến lớp 9 nhằm giúp học sinh ôn tập chuẩn bị cho kỳ thi vào lớp 10 môn Toán, đồng thời giúp các em có nền tảng kiến thức vững vàng để tiếp tục học tốt môn Toán THPT, sách được biên soạn bởi các tác giả: Mai Công Mãn (chủ biên), Nguyễn Trọng Dương, Nguyễn Thế Vận, Nguyễn Thị Hiền, Thiều Thị Huyền. Nội dung sách Tổng ôn tập Toán THCS thi vào lớp 10 gồm các chủ đề : Phần 1 . Đại số 1. Biến đổi đồng nhất 2. Biến đổi căn thức 3. Hàm số và đồ thị 4. Phương trình 5. Hệ phương trình 6. Giải bài toán bằng cách lập phương trình và hệ phương trình 7. Bất đẳng thức – Bất phương trình – Cực trị đại số [ads] Phần 2 . Hình học 1. Định lý Talet – Tam giác đồng dạng 2. Đường tròn 3. Hình học không gian
16 chuyên đề ôn thi vào lớp 10 môn Toán
THCS. giới thiệu đến thầy, cô và các em học sinh cuốn sách 16 chuyên đề ôn thi vào lớp 10 môn Toán, sách gồm 192 trang tuyển tập 9 chuyên đề Đại số và 7 chuyên đề Hình học môn Toán khối THCS nhằm giúp các em ôn tập để chuẩn bị cho kỳ thi vào lớp 10 môn Toán. Sách được biên soạn bởi các tác giả: Bùi Văn Tuyên (chủ biên) và Nguyễn Đức Trường. Phần 1. Các chuyên đề Đại số + Chuyên đề 1. Rút gọn và tính giá trị của biểu thức + Chuyên đề 2. Giải phương trình và hệ phương trình bậc nhất hai ẩn + Chuyên đề 3. Phương trình bậc hai một ẩn + Chuyên đề 4. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình + Chuyên đề 5. Hàm số và đồ thị + Chuyên đề 6. Chứng minh bất đẳng thức + Chuyên đề 7. Giải bất phương trình + Chuyên đề 8. Tìm giá trị nhỏ nhất, giá trị lớn nhất của biểu thức + Chuyên đề 9. Giải toán có nội dung số học [ads] Phần 2. Các chuyên đề Hình học + Chuyên đề 10. Chứng minh các hệ thức hình học + Chuyên đề 11. Chứng minh tứ giác nội tiếp và nhiều điểm cùng nằm trên đường tròn + Chuyên đề 12. Chứng minh quan hệ tiếp xúc giữa đường thẳng và đường tròn hoặc hai đường tròn + Chuyên đề 13. Chứng minh điểm cố định + Chuyên đề 14. Các bài tập có nội dung tính toán + Chuyên đề 15. Quỹ tích và dựng hình Phần 3. Một số đề thi vào lớp 10 môn Toán tham khảo Phần 4. Đáp số và hướng dẫn giải
Tài liệu chuyên Toán THCS
Tài liệu chuyên Toán THCS gồm 70 trang tuyển chọn các chuyên đề bồi dưỡng Toán dành cho học sinh khối chuyên và học sinh giỏi các lớp 6 – 7 – 8 – 9, đây là các chuyên đề thường xuất hiện trong các đề thi HSG và đề thi tuyển sinh vào 10 môn Toán. Trong mỗi chuyên đề đều bao gồm lý thuyết, ví dụ minh họa có lời giải chi tiết và phần bài tập rèn luyện. Các chuyên đề có trong tài liệu : 1. Chuyên đề 1: Phương pháp chứng minh phản chứng 2. Chuyên đề 2: Nguyên tắc Dirichlet 3. Chuyên đề 3: Định lý Bézout – Lược đồ Horner 4. Chuyên đề 4: Dấu tam thức bậc hai [ads] 5. Chuyên đề 5: Một số phương pháp giải phương trình nghiệm nguyên 6. Chuyên đề 6: Phần nguyên và ứng dụng 7. Chuyên đề 7: Đường thẳng Simson 8. Chuyên đề 8: Bất đẳng thức Erdos – Modell và một vài ứng dụng 9. Chuyên đề 9: Định lý Ptôlêmê và đặc trưng của tứ giác nội tiếp