Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề số phức và ứng dụng - Nguyễn Đăng Ái

Chuyên đề số phức và ứng dụng do thầy Nguyễn Đăng Ái biên soạn gồm 369 trang, bao gồm lý thuyết, phân dạng và hướng dẫn giải, ví dụ minh họa và bài tập có lời giải chi tiết chủ đề số phức. Nội dung tài liệu : I. CƠ BẢN VÀ CÁC PHÉP TOÁN TRÊN TẬP SỐ PHỨC 1.1 Các định nghĩa về tập số phức C 1.2. Các phép toán trên tập số phức 1.3. Các tính chất cơ bản của số phức 1.4. Lũy thừa của số ảo in – Cấp số cộng và cấp số nhân trong số phức 1.5. Hàm số phức – Bài toán đồng nhất hàm bằng số ảo f(i) = Ai + B II. DẠNG LƯỢNG GIÁC CỦA SỐ PHỨC – CÔNG THỨC Ơ LE 2.1. Cách chuyển từ dạng đại số sang dạng lượng giác của một số phức 2.2. Ứng dụng của dạng lượng giác – Công thức Ơ le – Công thức Moivre cơ bản 2.3. Ứng dụng dạng lượng giác vào một số bài toán cực trị lũy thừa lớn 2.4. Ứng dụng dạng lượng giác vào một số bài toán số phức có mô đun bằng 1 III. PHƯƠNG TRÌNH BẬC NHẤT – HỆ PHƯƠNG TRÌNH BẬC NHẤT 3.1. Phương trình bậc nhất chứa một biến 3.2. Phương trình bậc nhất chứa hai biến 3.3. Biện luận theo tham số phức một phương trình bậc nhất phức 3.4. Hệ phương trình bậc nhất trong số phức IV. CĂN BẬC HAI – PHƯƠNG TRÌNH BẬC CAO – XỬ LÍ MÔ ĐUN 4.1. Căn bậc hai của một số âm 4.2. Căn bậc hai của một số phức 4.3. Phương trình bậc 2 trên tập số phức 4.4. Phương trình bậc cao – Phân tích nhân tử – Đặt ẩn phụ – Khai căn thức 4.5. Các định lí VIET áp dụng vào phương trình bậc cao trắc nghiệm phức 4.6. Phương trình phức dạng đa thức với các hệ số thực 4.7. Xử lí mô đun trong các phương trình phức V. BẤT ĐẲNG THỨC ĐẠI SỐ PHỨC – BÀI TOÁN CỰC TRỊ ĐẠI SỐ 5.1. Bất đẳng thức tam giác – Bài toán số phức đồng dạng 5.2. Bất đẳng thức CÔ SI – Bất đẳng thức BUNHIA vận dụng trong số phức 5.3. Một số bất đẳng thức không mẫu mực trong số phức VI. MẶT PHẲNG PHỨC – GIẢI TÍCH TRÊN MẶT PHẲNG PHỨC 6.1. Biểu diễn điểm và các công thức cơ bản trên mặt phẳng phức 6.2. Bất đẳng thức tam giác ứng dụng vào một số bất đẳng thức hình học 6.3. Quỹ tích là đường thẳng trên mặt phẳng phức 6.4. Quỹ tích là đường tròn trên mặt phẳng phức 6.5. Elip trong mặt phẳng phức – Các bài toán nâng cao 6.6. Quỹ tích là đường hypebol cơ bản 6.7. Các đường cong bất kì: Đường thẳng – Đường tròn – Elip – Hypebol – Parabol 6.8. Phép quay trong số phức – Nâng cao tư duy véc tơ phức 6.9. Bài toán tương giao trên mặt phẳng phức – Hệ phương trình mô đun phức 6.10. Biểu diễn số phức là một miền trên hình phẳng – Cực trị phức trên miền D 6.11. Bài toán tâm tỉ cự trên mặt phẳng phức 6.12. Bình phương vô hướng ứng dụng trên mặt phẳng phức 6.13. Các số phức có mô đun bằng nhau – Bài toán phân bố véc tơ trên vòng tròn

Nguồn: toanmath.com

Đọc Sách

50 câu trắc nghiệm tổng ôn số phức có lời giải chi tiết - Lê Viết Nhơn
Tài liệu gồm 15 trang tuyển tập 50 câu hỏi trắc nghiệm tổng ôn chuyên đề số phức được trích từ các đề thi thử THPT Quốc gia năm 2017. Các câu hỏi được phân tích và giải chi tiết. Trích dẫn tài liệu : + Cho số phức z = 3 – 2i. Tìm phần thực và phần ảo của số phức z A. Phần thực bằng –3 và Phần ảo bằng –2i B. Phần thực bằng –3 và Phần ảo bằng –2 C. Phần thực bằng 3 và Phần ảo bằng 2i D. Phần thực bằng 3 và Phần ảo bằng 2 [ads] + Trên trường số phức C, cho phương trình az^2 + bz + c = 0 (a, b, c ∈ R, a ≠ 0). Chọn khẳng định sai: A. Phương trình luôn có nghiệm B. Tổng hai nghiệm bằng -b/a C. Tích hai nghiệm bằng c/a D. Δ = b^2 – 4ac thì phương trình vô nghiệm + Trong mặt phẳng phức, gọi M là điểm biểu diễn cho số phức z = a + bi (a, b ∈ R, a.b ≠ 0). M’ là diểm biểu diễn cho số phức z‾. Mệnh đề nào sau đây đúng? A. M’ đối xứng với M qua Oy B. M’ đối xứng với M qua Ox C. M’ đối xứng với M qua O D. M’ đối xứng với M qua đường thẳng y = x
Tuyển tập một số bài toán trắc nghiệm số phức trong các đề thi thử - Trần Văn Tài
Tài liệu gồm 17 trang tuyển tập 118 bài tập trắc nghiệm số phức trong các đề thi thử THPT Quốc gia 2017 có đáp án. Các bài tập được phân thành các dạng: + Dạng 1. Tìm phần thực và phần ảo + Dạng 2. Tìm modun của số phức + Dạng 3. Tìm số phức z thỏa điều kiện cho trước + Dạng 4. Tập hợp điểm + Dạng 5. Giải phương trình [ads]
100 câu hỏi trắc nghiệm số phức tổng hợp - Lê Bá Bảo
Tài liệu gồm 12 trang tổng hợp 100 bài toán số phức, có đáp án, tài liệu được biên soạn phục vụ ôn tập kỳ thi THPT Quốc gia môn Toán. Trích dẫn tài liệu : + Trong các kết luận sau, kết luận nào sai? A. Môđun của số phức z là một số thực B. Môđun của số phức z là một số phức C. Môđun của số phức z là một số thực dương D. Môđun của số phức z là một số thực không âm [ads] + Nếu acgumen của z bằng -π/2 + k2π (k ∈ Z) thì: A. Phần ảo của z là số dương và phần thực của z bằng 0 B. Phần ảo của z là số âm và phần thực của z bằng 0 C. Phần thực của z là số âm và phần ảo của z bằng 0 D. Phần thực và phần ảo của z đều là số âm + Khi số phức z ≠ 0 thay đổi tuỳ ý thì tập hợp các số z^2 + 1 là: A. Tập hợp các số thực lớn hơn 1 B. Tập hợp các số phức C. Tập hợp các số phức khác 1 D. Tập hợp các số phức khác 0 và -i
Chuyên đề trắc nghiệm số phức - Phạm Văn Huy
Tài liệu chuyên đề số phức được biên soạn bởi tác giả Phạm Văn Huy gồm 140 trang với các bài toán trắc nghiệm số phức chọn lọc có lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề trắc nghiệm số phức – Phạm Văn Huy: Chủ đề 1 . Các phép toán cơ bản (236 bài tập). Chủ đề 2 . Biểu diễn hình học của số phức (74 bài tập). Loại 1 : Trong mặt phẳng tọa độ Oxy, hãy tìm tập hợp điểm M biểu diễn các số phức z = x + yi thỏa mãn điều kiện K cho trước? + Bước 1. Gọi M(x; y) là điểm biểu diễn số phức: z = x + yi (x, y ∈ R). + Bước 2. Biến đổi điều kiện K để tìm mối liên hệ giữa x, y và kết luận. Loại 2 : Tìm số phức z có lớn nhất, nhỏ nhất thỏa mãn tính chất K cho trước. + Bước 1. Tìm tập hợp điểm biểu diễn các số phức z để được mối liên hệ giữa x và y. + Bước 2. Dựa vào mối liên hệ giữa x và y ở bước 1, để tìm |z|_min, |z|_max. Thông thường với loại này, người ra đề hay cho tập hợp biểu diễn số phức z là một đường thẳng hoặc đường tròn. Khi đó, ta có hai hướng xử lý: một là sử dụng phương pháp hình học, hai là sử dụng phương pháp đại số (bất đẳng thức). [ads] Chủ đề 3 . Phương trình bậc hai và phương trình bậc cao (44 bài tập). Xét phương trình bậc hai az^2 + bz + c = 0 với a khác 0 có biệt số Δ = b^2 – 4ac. Khi đó: + Nếu Δ = 0 thi phương trình có nghiệm kép -b/2a. + Nếu Δ khác 0 và gọi φ là căn bậc hai của Δ thì phương trình có hai nghiệm (-b ± φ)/2a. Ta có thể làm tương tự đối với trường hợp căn bậc ba, căn bậc bốn. Ngoài cách tìm căn bậc hai của số phức như trên, ta có thể tách ghép đưa về số chính phương dựa vào hằng đẳng thức. Bài tập trắc nghiệm (57 bài tập).