Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG cấp trường lớp 7 môn Toán năm 2020 2021 trường THCS Cẩm Bình Hà Tĩnh

Nội dung Đề thi HSG cấp trường lớp 7 môn Toán năm 2020 2021 trường THCS Cẩm Bình Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi HSG cấp trường lớp 7 môn Toán năm 2020-2021 trường THCS Cẩm Bình Hà Tĩnh Đề thi HSG cấp trường lớp 7 môn Toán năm 2020-2021 trường THCS Cẩm Bình Hà Tĩnh Đề thi HSG cấp trường môn Toán lớp 7 năm học 2020-2021 của trường THCS Cẩm Bình - Hà Tĩnh là bài thi có tính chất khá nặng, yêu cầu kiến thức và sự suy luận logic cao. Bài thi gồm 10 câu dạng ghi kết quả và 01 câu tự luận, thời gian làm bài 120 phút. Trong đề thi, có một số câu hỏi khó như: + Trong tam giác ABC, các tia phân giác của góc B và góc C cắt nhau tại O. Hỏi số đo của góc A khi biết BOC = 120°? + Tìm số có ba chữ số, biết rằng số đó chia hết cho 18 và các chữ số của nó tỉ lệ với ba số 1, 2 và 3. + Cho tam giác ABC có ba góc nhọn và AB < AC. Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao điểm của BE và CD. a) Chứng minh ABE = ADC. b) Tính số đo góc BIC. Bài thi này đòi hỏi sự tư duy, logic và kiến thức toán học sâu rộng từ các em học sinh lớp 7. Hy vọng rằng đề thi sẽ giúp các em rèn luyện kỹ năng giải toán và tự tin hơn trong việc học Toán.

Nguồn: sytu.vn

Đọc Sách

Đề HSG Toán 7 năm 2022 - 2023 cụm chuyên môn 3T-H-G Bình Xuyên - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi chọn học sinh giỏi cấp trường môn Toán 7 năm học 2022 – 2023 cụm chuyên môn 3T-H-G trực thuộc phòng GD&ĐT huyện Bình Xuyên, tỉnh Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn Đề HSG Toán 7 năm 2022 – 2023 cụm chuyên môn 3T-H-G Bình Xuyên – Vĩnh Phúc : + Ba lớp 7A, 7B, 7C cùng tham gia trồng cây trong vườn trường, lúc đầu thầy phụ trách dự định giao số cây trồng cho ba lớp tỉ lệ với 5:6:7 nhưng sau đó thầy giao theo tỉ lệ 4:5:6 nên có một lớp trồng nhiều hơn dự định 4 cây. Tính tổng số cây mà ba lớp đã trồng. + Cho tam giác ABC có ba góc nhọn (AB AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. a) Chứng minh rằng DC = BE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. + Cho tam giác ABC cân tại A, gọi D là trung điểm của AC. Trên đoạn BD lấy điểm E sao cho DAE ABD. Chứng minh rằng DAE ECB.
Đề học sinh giỏi Toán 7 năm 2022 - 2023 phòng GDĐT Hậu Lộc - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng học sinh giỏi môn Toán 7 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Hậu Lộc, tỉnh Thanh Hóa; kỳ thi được diễn ra vào thứ Bảy ngày 25 tháng 02 năm 2023. Trích dẫn đề học sinh giỏi Toán 7 năm 2022 – 2023 phòng GD&ĐT Hậu Lộc – Thanh Hóa : + Số A được chia thành ba phần tỉ lệ theo. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho a, b, c, d là các số nguyên thỏa mãn a2 = b2 + c2 + d2. Chứng minh rằng: abcd + 2023 viết được dưới dạng hiệu của hai số chính phương. + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE và EIB = 60. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh: AMN đều. c) Chứng minh rằng: IA là phân giác của góc DIE.
Đề HSG cấp cụm Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát chất lượng cấp cụm môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết; kỳ thi được diễn ra vào ngày 29 tháng 01 năm 2023. Trích dẫn Đề HSG cấp cụm Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Tìm tất cả các số tự nhiên a, b sao cho: 2a + 7 = |b – 5| + b – 5. + Tìm các giá trị nguyên của x để biểu thức C 22 3x 4 x có giá trị lớn nhất. + Cho ∆ABC có góc A nhỏ hơn 900. Vẽ ra ngoài tam giác ABC các tam giác vuông cân tại A là ∆ABM và ∆ACN. a) Chứng minh rằng: MC = BN. b) Chứng minh rằng: BN ⊥ CM. c) Kẻ AH ⊥ BC (H ∈ BC). Chứng minh AH đi qua trung điểm của MN.
Đề khảo sát HSG Toán 7 năm 2022 - 2023 trường THCS Cành Nàng - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề thi khảo sát chọn đội tuyển học sinh giỏi môn Toán 7 năm học 2022 – 2023 trường THCS thị trấn Cành Nàng, huyện Bá Thước, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề khảo sát HSG Toán 7 năm 2022 – 2023 trường THCS Cành Nàng – Thanh Hóa : + Số A được chia thành 3 số tỉ lệ theo 231 546. Biết rằng tổng các bình phương của ba số đó bằng 24309. Tìm số A. + Cho tam giác ABC, M là trung điểm của BC. Trên tia đối của của tia MA lấy điểm E sao cho ME = MA. Chứng minh rằng: a) AC = EB và AC // BE. b) Gọi I là một điểm trên AC; K là một điểm trên EB sao cho AI = EK. Chứng minh ba điểm I, M, K thẳng hàng. c) Từ E kẻ EH BC (H BC). Biết HBE = 50o; MEB = 25o. Tính số đo HEM và BME. + Chứng minh rằng nếu 2n + 1 và 3n + 1 (với n N) đều là các số chính phương thì n chia hết cho 40.