Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán lần 3 năm 2021 2022 trường THCS Thanh Quan Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán lần 3 năm 2021 2022 trường THCS Thanh Quan Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán lần 3 năm 2021 2022 trường THCS Thanh Quan Hà Nội Đề khảo sát lớp 9 môn Toán lần 3 năm 2021 2022 trường THCS Thanh Quan Hà Nội Chào các thầy cô và các em học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề kiểm tra khảo sát chất lượng môn Toán lớp 9 lần 3 năm học 2021 – 2022 của trường THCS Thanh Quan, quận Hoàn Kiếm, thành phố Hà Nội. Kỳ thi sẽ diễn ra vào ngày 08 tháng 06 năm 2022, với đề thi kèm đáp án, lời giải chi tiết và bảng hướng dẫn chấm điểm. Đề thi bao gồm các câu hỏi thú vị như: 1. Giải bài toán bằng cách lập phương trình và hệ phương trình: Hai xí nghiệp cùng may một loại áo. Nếu xí nghiệp thứ nhất may trong 5 ngày và xí nghiệp thứ hai may trong 3 ngày thì cả hai xí nghiệp may được 2620 chiếc áo. Biết rằng trong một ngày xí nghiệp thứ hai may nhiều hơn xí nghiệp thứ nhất 20 chiếc áo. Hỏi mỗi xí nghiệp trong một ngày may được bao nhiêu chiếc áo? 2. Bạn Nam dùng giấy bìa để làm một chiếc mũ sinh nhật hình nón có chiều cao 16cm, đường kính đáy mũ 24 cm. Bạn cần tính diện tích giấy bìa vừa đủ để hoàn thành chiếc mũ đó. (Coi phần bìa dành cho các mép nối là không đáng kể). 3. Trong mặt phẳng toạ độ Oxy có parabol y = x^2 và đường thẳng y = mx + a. Câu hỏi bao gồm: a) Tìm m để parabol và đường thẳng cùng đi qua điểm có hoành độ x = 2 b) Chứng minh rằng đường thẳng luôn cắt parabol tại hai điểm phân biệt với mọi m. Gọi x1 và x2 là các hoành độ giao điểm của đường thẳng và parabol, hãy tìm m để x1^2 + x2^2 = 3 Hy vọng rằng đề thi sẽ giúp các em học sinh ôn tập và chuẩn bị tốt cho kỳ thi sắp tới. Chúc các em đạt kết quả cao!

Nguồn: sytu.vn

Đọc Sách

Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN - Hà Nội (Vòng 2)
Đề kiểm tra kiến thức Toán 9 đợt 1 năm 2021 trường chuyên KHTN – Hà Nội (Vòng 2) gồm 01 trang với 04 bài toán dạng tự luận, thời gian làm bài 150 phút; kỳ thi được diễn ra vào ngày 28 tháng 03 năm 2021.
Đề khảo sát Toán 9 năm 2020 - 2021 trường Hoàng Hoa Thám - Hà Nội
Đề khảo sát chất lượng Toán 9 năm học 2020 – 2021 trường THCS Hoàng Hoa Thám – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian học sinh làm bài thi là 90 phút.
Đề khảo sát Toán 9 lần 3 năm 2020 - 2021 trường THCS Tam Hồng - Vĩnh Phúc
Đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc gồm 04 câu trắc nghiệm và 05 câu tự luận, thời gian học sinh làm bài thi là 120 phút, đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề khảo sát Toán 9 lần 3 năm 2020 – 2021 trường THCS Tam Hồng – Vĩnh Phúc : + Cho đường tròn (O, 3cm) và đường tròn (O’, 4cm). Biết độ dài đoạn nối tâm OO’ = 6cm. Khẳng định nào sau đây đúng? A. Hai đường tròn (O) và (O’) tiếp xúc nhau. B. Hai đường tròn (O) và (O’) cắt nhau. C. Hai đường tròn (O) và (O’) ở ngoài nhau. D. Đường tròn (O’) đựng đường tròn (O). + Cho hai đường tròn (O), (O’) tiếp xúc ngoài tại A. Gọi AB là đường kính của đường tròn (O), AC là đường kính của đường tròn (O’), DE là tiếp tuyến chung của hai đường tròn. K là giao điểm của BD và CE. a) Tính số đo DAE. b) Tứ giác ADKE là hình gì? Vì sao? c) Chứng minh AK là tiếp tuyến chung của 2 đường tròn (O) và (O’). d) Gọi M là trung điểm của BC. Chứng minh MK DE. + Cho hàm số bậc nhất: y = (m – 1)x + 1 (m là tham số). a) Tìm m để hàm số nghịch biến trên R. b) Vẽ đồ thị hàm số khi m = -1. c) Tìm m để đồ thị của hàm số đã cho cắt đường thẳng y = x -3 tại điểm có hoành độ bằng -2.
Đề khảo sát Toán 9 lần 2 năm 2020 - 2021 trường THCS Thanh Xuân - Hà Nội
Đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề khảo sát Toán 9 lần 2 năm 2020 – 2021 trường THCS Thanh Xuân – Hà Nội : + Một máy bay cất cánh theo phương có góc nghiêng là 23°. Hỏi muốn đạt độ cao là 2500m, máy bay phải bay một đoạn đường là bao nhiêu mét? (làm tròn đến mét). + Cho tam giác đều ABC nội tiếp đường tròn tâm O. Trên cạnh BC lấy điểm N, gọi E và F theo thứ tự là hình chiếu của N lên AB, AC. Gọi D là trung điểm của ВC. a) Chứng minh rằng bốn điểm A, E, N, F cùng thuộc một đường tròn. Xác định tâm I của đường tròn đó. b) Chứng minh rằng BN.BD = BE.BA. c) Chứng minh rằng ED = FD. d) Gọi H là giao điểm của hai đường chéo của tứ giác EIFD. Chứng minh O, H, N thẳng hàng. + Cho xy + yz + zx = 1. Tìm giá trị nhỏ nhất của P = 3(x2 + y2) + z2.