Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề bất đẳng thức và cực trị hình học ôn thi vào lớp 10

Tài liệu gồm 41 trang, hướng dẫn phương pháp giải và tuyển chọn các bài tập chuyên đề bất đẳng thức và cực trị hình học, có đáp án và lời giải chi tiết, giúp học sinh lớp 9 ôn tập chuẩn bị cho kì thi tuyển sinh vào lớp 10 môn Toán; các bài toán trong tài liệu được trích từ các đề thi tuyển sinh lớp 10 môn Toán của các sở GD&ĐT và các trường THPT chuyên trên toàn quốc. SỬ DỤNG CÁC TÍNH CHẤT HÌNH HỌC ĐƠN GIẢN 1) Bất đẳng thức liên hệ giữa độ dài các cạnh một tam giác: AB AC BC AB BC. Chú ý rằng: a. Với 3 điểm A B C bất kỳ ta luôn có: AB BC AC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. b) Với 3 điểm A B C bất kỳ ta luôn có: AB AC BC. Dấu bằng xảy ra khi và chỉ khi A B C thẳng hàng và điểm B nằm giữa hai điểm AC. c) Cho hai điểm AB nằm về một phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M0). MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M1). d) Cho hai điểm AB nằm về hai phía đường thẳng d. Điểm M chuyển động trên đường thẳng d. Gọi A’ là điểm đối xứng với A qua d. Ta có kết quả sau: MA MB AB. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB và đường thẳng d (M trùng với M0) MA MB MA MB A B. Dấu bằng xảy ra khi và chỉ khi M là giao điểm của AB’ và đường thẳng d (M trùng với M1). e) Trong quá trình giải toán ta cần lưu ý tính chất: Đường vuông góc luôn nhỏ hơn hoặc bằng đường xiên. Trong hình vẽ: AH AB M1. 2) Trong một đường tròn, đường kính là dây cung lớn nhất. 3) Cho đường tròn O R và một điểm A. Đường thẳng AO cắt đường tròn tại hai điểm 1 2 M M. Giả sử AM AM 1 2. Khi đó với mọi điểm M nằm trên đường tròn ta luôn có: AM AM AM 1 2. SỬ DỤNG BẤT ĐẲNG THỨC CỔ ĐIỂN ĐỂ GIẢI BÀI TOÁN CỰC TRỊ Ở cấp THCS, các em học sinh được làm quen với bất đẳng thức Cauchy dạng 2 số hoặc 3 số. Để giải quyết tốt các bài toán hình học: Ta cần nắm chắc một số kết quả quan trọng sau: Trước hết ta cần nắm được các kết quả cơ bản sau: 1. Cho các số thực dương ab 2 4 2 a b a b ab ab a b ab. Dấu bằng xảy ra khi và chỉ khi a b. 2. Cho các số thực dương a b c a b c a b c abc abc. Dấu bằng xảy ra khi và chỉ khi a b c. Ngoài ra các em học sinh cần nắm chắc các công thức về diện tích tam giác liên hệ độ dài các cạnh và góc như: Diện tích hình chữ nhật; Diện tích hình thang; Diện tích hình vuông.

Nguồn: toanmath.com

Đọc Sách

Sử dụng nguyên lí Dirichle chứng minh bất đẳng thức - Nguyễn Tài Chung
Tài liệu gồm 28 trang, được biên soạn bởi thầy giáo Nguyễn Tài Chung, hướng dẫn sử dụng nguyên lí Dirichle chứng minh bất đẳng thức, phù hợp với học sinh bồi dưỡng học sinh giỏi Toán cấp THCS và ôn thi tuyển sinh vào lớp 10 trường chuyên. Khái quát nội dung tài liệu sử dụng nguyên lí Dirichle chứng minh bất đẳng thức – Nguyễn Tài Chung: A. LÝ THUYẾT VÀ VÍ DỤ GIẢI TOÁN Nếu nhốt 3 con chim Bồ Câu vào trong 2 cái chuồng thì bao giờ cũng có một chuồng chứa ít nhất 2 con chim Bồ Câu. Khẳng định gần như hiển nhiên này được gọi là Nguyên lý Dirichle. [ads] Bây giờ ta hình dung trên trục số, điểm 0 chia trục số thành 2 phần, hay 2 cái chuồng mà vách ngăn là số 0. Như thế với ba số a, b, c mà ta xem như là 3 con chim Bồ Câu thì sẽ có một cái chuồng chứa ít nhất hai con chim Bồ Câu, nghĩa là sẽ có hai số cùng không âm (tức là có hai con chim Bồ Câu cùng thuộc chuồng [0; +∞)) hoặc cùng không dương (tức là có hai con chim Bồ Câu cùng thuộc chuồng (−∞; 0]). Do đó ta có thể giả sử có hai số, mà ta gọi là a và b, sao cho ab ≥ 0. Như vậy, trong bài toán bất đẳng thức, khi ta đã chọn được “điểm rơi” (tức là đẳng thức của bài toán), ví dụ như đẳng thức xảy ra khi a = b = c = k thì ta có thể giả sử 2 số (a − k), (b − k) cùng không âm hoặc cùng không dương, tức là có thể giả sử (a − k)(b − k) ≥ 0. B. BÀI TẬP
5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán - Lê Văn Hưng
Tài liệu gồm 182 trang được biên soạn bởi thầy giáo Lê Văn Hưng, tuyển tập 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán, tương ứng với 5 bài toán trong các đề tuyển sinh vào lớp 10 của sở Giáo dục và Đào tạo Hà Nội. Trong mỗi chủ đề, tài liệu tóm tắt lý thuyết trọng tâm học sinh cần nắm, hướng dẫn giải các dạng bài tập điển hình và chọn lọc các bài tập tự luyện từ các đề tuyển sinh vào lớp 10 môn Toán, có đáp số và hướng dẫn giải. Khái quát nội dung tài liệu 5 chủ đề ôn thi tuyển sinh vào lớp 10 môn Toán – Lê Văn Hưng: CHỦ ĐỀ I : RÚT GỌN BIỂU THỨC VÀ BÀI TOÁN PHỤ. + Dạng 1. Tính giá trị cuả biểu thức A khi x = x0. + Dạng 2. Tìm giá trị của biến khi biết giá trị của biểu thức. + Dạng 3. So sánh biểu thức A với k hoặc. + Dạng 4. Tìm giá trị nguyên để của x để biểu A có giá trị nguyên. + Dạng 5. Tìm giá trị của x để biểu A có giá trị nguyên. + Dạng 6. Tìm giá trị nhỏ nhất hoặc giá trị lớn nhất của biểu thức A. + Dạng 7. Chứng minh biểu thức A luôn luôn âm hoặc luôn luôn dương. + Dạng 8. Chứng minh biểu thức thỏa mãn với điều kiện nào đó. CHỦ ĐỀ II : HỆ PHƯƠNG TRÌNH. Phần I : Giải và biện luận hệ phương trình. + Dạng 1. Giải hệ phương trình cơ bản. + Dạng 2. Giải hệ phương trình không cơ bản. + Dạng 3. Giải hệ phương trình chứa tham tham số. Phần II : Giải bài toán bằng cách lập hệ phương trình. + Dạng 1. Tìm các chữ số tự nhiên. + Dạng 2. Tính tuổi. + Dạng 3. Hình học. + Dạng 4. Toán liên quan đến tỉ số phần trăm. + Dạng 5. Toán làm chung công việc. + Dạng 6. Bài toán liên quan đến sự thay đổi của tích. + Dạng 7. Toán chuyển động. [ads] CHỦ ĐỀ III : PHƯƠNG TRÌNH BẬC HAI – ĐƯỜNG THẲNG – PARABOL. + Dạng 1. Tính giá trị của hàm số y = f(x) = ax2 tại x = x0. + Dạng 2. Xác định tính đồng biến, nghịch biến của hàm số. + Dạng 3. Vẽ đồ thị hàm số y = f(x) = ax2 (a khác 0). + Dạng 4. Xác định tham số. + Dạng 5. Tìm tọa độ giao điểm của parabol và đường thẳng. + Dạng 6. Xác định hệ số a, b, c của phương trình bậc hai. + Dạng 7. Giải phương trình bậc hai. + Dạng 8. Giải và biện luận phương trình bậc hai. + Dạng 9. Giải hệ phương trình hai ẩn gồm một ẩn. + Dạng 10. Giải hệ phương trình có hai ẩn số. + Dạng 11. Hệ thức Vi-ét và ứng dụng. + Dạng 12. Giải và biện luận phương trình trùng phương. + Dạng 13. Giải một số phương trình, hệ phương trình. + Dạng 14. Giải bài toán bằng cách lập phương trình. + Dạng 15. Tìm hệ thức liên hệ giữa các nghiệm không phụ thuộc. + Dạng 16. Tìm điểm cố định của đường thẳng phụ thuộc tham số. + Dạng 17. Tìm tham số m sao cho khoảng cách từ gốc tọa độ đến. CHỦ ĐỀ IV : CÁC BÀI TOÁN LIÊN QUAN ĐẾN ĐƯỜNG TRÒN. + Dạng 1. Bài toán liên quan đến chứng minh. + Dạng 2. Bài toán liên quan đến tính toán. + Dạng 3. Bài toán liên quan đến quỹ tích. + Dạng 4. Bài toán liên quan đến dựng hình. + Dạng 5. Bài toán liên quan đến cực trị hình học. CHỦ ĐỀ V : BÀI TOÁN MIN – MAX, GIẢI PHƯƠNG TRÌNH CHỨA CĂN THỨC. Phần I . Bài toán Min – Max. + Dạng 1. Kĩ thuật chọn điểm rơi. + Dạng 2. Kĩ thuật khai thác giả thiết. + Dạng 3. Kĩ thuật Cô – si ngược dấu. Phần II . Giải phương trình chứa căn thức. + Dạng 1. Sử dụng biến đổi đại số. + Dạng 2. Đặt ẩn phụ. + Dạng 3. Đánh giá.
Phân tích bình luận 111 bài toán bất đẳng thức - Nguyễn Công Lợi
Tài liệu gồm có 98 trang được biên soạn bởi tác giả Nguyễn Công Lợi, tuyển chọn và giới thiệu một số bài toán bất đẳng thức hay và khó, cùng với đó là quá trình phân tích để đi đến hình thành lời giải cho bài toán bất đẳng thức đó. Từ các bài toán đó ta sẽ thấy được quá trình phân tích đặc điểm của giả thiết bài toán cũng như bất đẳng thức cần chứng minh, từ đó có những nhận định, định hướng để tìm tòi lời giải và cách trình bày lời giải cho một bài toán bất đẳng thức.
Chuyên đề phương trình nghiệm nguyên
Bài toán phương trình nghiệm nguyên là bài toán thường gặp trong đề thi HSG Toán 8 và đề thi HSG Toán 9, đây là dạng toán yêu cầu tìm tất cả các bộ số nguyên thỏa mãn một phương trình có nhiều ẩn số. Nhằm giúp các em có thể học tốt chủ đề này, THCS. giới thiệu đến các em tài liệu chuyên đề phương trình nghiệm nguyên; tài liệu gồm có 89 trang bao gồm: lý thuyết cần nắm, dạng toán, phương pháp giải, ví dụ mẫu và bài tập rèn luyện có lời giải chi tiết. Khái quát nội dung tài liệu chuyên đề phương trình nghiệm nguyên: A. Kiến thức cần nhớ 1. Giải phương trình nghiệm nguyên. 2. Một số lưu ý khi giải phương trình nghiệm nguyên. Khi giải các phương trình nghiệm nguyên cần vận dụng linh hoạt các tính chất về chia hết, đồng dư, tính chẵn lẻ … để tìm ra điểm đặc biệt của các ẩn số cũng như các biểu thức chứa ẩn trong phương trình, từ đó đưa phương trình về các dạng mà ta đã biết cách giải hoặc đưa về những phương trình đơn giản hơn. Các phương pháp thường dùng để giải phương trình nghiệm nguyên là: Phương pháp dùng tính chất chia hết; Phương pháp xét số dư từng vế;  Phương pháp sử dụng bất đẳng thức; Phương pháp dùng tính chất của số chính phương; Phương pháp lùi vô hạn, nguyên tắc cực hạn. B. Một số phương pháp giải phương trình nghiệm nguyên I. Phương pháp dùng tính chia hết + Dạng 1: Phát hiện tính chia hết của một ẩn. + Dạng 2: Phương pháp đưa về phương trình ước số. + Dạng 3: Phương pháp tách ra các giá trị nguyên. II. Phương pháp sử dụng tính chẵn lẻ của ẩn hoặc xét số dư từng vế + Dạng 1: Sử dụng tính chẵn lẻ. + Dạng 2: Xét tính chẵn lẻ và xét số dư từng vế. [ads] III. Phương pháp dùng bất đẳng thức + Dạng 1: Sử dụng bất đẳng thức cổ điển. + Dạng 2: Sắp xếp thứ tự các ẩn. + Dạng 3: Chỉ ra nghiệm nguyên. + Dạng 4: Sử dụng điều kiện ∆ ≥ 0 để phương trình bậc hai có nghiệm. IV. Phương pháp dùng tính chất của số chính phương + Dạng 1: Dùng tính chất về chia hết của số chính phương. + Dạng 2: Biến đổi phương trình về dạng trong đó là các đa thức hệ số nguyên là số nguyên dương, k là số tự nhiên. + Dạng 3: Xét các số chính phương liên tiếp. + Dạng 4: Sử dụng điều kiện ∆ là số chính phương. + Dạng 5: Sử dụng tính chất: Nếu hai số nguyên liên tiếp có tích là một số chính phương thì một trong hai số nguyên liên tiếp đó bằng 0. + Dạng 6: Sử dụng tính chất: Nếu hai số nguyên dương nguyên tố cùng nhau có tích là một số chính phương thì mỗi số đều là số chính phương. V. Phương pháp lùi vô hạn, nguyên tắc cực hạn + Dạng 1: Phương pháp lùi vô hạn. + Dạng 2: Nguyên tắc cực hạn.