Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi huyện lớp 7 môn Toán năm 2015 2016 phòng GD ĐT Nho Quan Ninh Bình

Nội dung Đề học sinh giỏi huyện lớp 7 môn Toán năm 2015 2016 phòng GD ĐT Nho Quan Ninh Bình Bản PDF - Nội dung bài viết Đề thi học sinh giỏi huyện lớp 7 môn Toán Nho Quan Ninh Bình Đề thi học sinh giỏi huyện lớp 7 môn Toán Nho Quan Ninh Bình Chào các thầy cô giáo và các em học sinh, hôm nay Sytu xin giới thiệu đến các bạn đề thi học sinh giỏi huyện Toán lớp 7 năm 2015 – 2016 của phòng GD&ĐT Nho Quan - Ninh Bình. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn một số câu hỏi từ đề thi: 1. Cho một dãy số gồm tất cả các số nguyên có giá trị tuyệt đối nhỏ hơn 30. Tính tổng của tất cả các hiệu khi lấy số đó trừ đi số thứ tự của nó. 2. Chứng minh rằng trong tam giác ABC vuông tại A, với đường cao AH, các tam giác ABE vuông cân tại B và ACF vuông cân tại C, ta có thể đưa ra các kết luận sau: a) 0 BAH EBC 180 đồng thời BAI EBC, b) BI = CE và ba điểm E, A, F thẳng hàng, c) Ba đường thẳng AH, CE, BF cắt nhau tại một điểm. 3. Cho a, b là các số hữu tỉ khác 0, thỏa mãn điều kiện: a ab a b b. Hãy tính giá trị của biểu thức 2 2 Ta b. Chúc các em học sinh ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới. Đề thi này sẽ giúp các bạn rèn luyện kiến thức và kỹ năng giải bài tập một cách hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2009 - 2010 phòng GDĐT Phú Thiện - Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2009 – 2010 phòng GD&ĐT Phú Thiện – Gia Lai : + Cho tam giác ABC vuông tại A; K là trung điểm của BC. Trên tia đối của tia KA lấy D sao cho KD = KA. a. Chứng minh: CD // AB. b. Gọi H là trung điểm của AC; BH cắt AD tại M; DH cắt BC tại N. Chứng minh rằng: ABH = CDH. c. Chứng minh: HMN cân. + Chứng minh rằng số có dạng abcabc luôn chia hết cho 11. + Cho tỉ lệ thức d c b a. Chứng minh rằng: (a + 2c)(b + d) = (a + c)(b + 2d).