Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Lý Thường Kiệt Bắc Ninh

Nội dung Đề kiểm tra lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Lý Thường Kiệt Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề kiểm tra chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh; đề thi gồm 05 trang, hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 132 – 209. Trích dẫn Đề kiểm tra lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Lý Thường Kiệt – Bắc Ninh : + Bác An đầu tư 1,2 tỉ đồng vào ba loại trái phiếu: trái phiếu chính phủ với lãi suất 7% một năm, trái phiếu ngân hàng với lãi suất 8% một năm và trái phiếu doanh nghiệp rủi ro cao với lãi suất 12% một năm. Vì lí do giảm thuế, bác An muốn số tiền đầu tư trái phiếu chính phủ gấp 3 lần số tiền đầu tư trái phiếu ngân hàng. Hơn nữa, để giảm thiểu rủi ro, bác An đầu tư không quá 200 triệu đồng cho trái phiếu doanh nghiệp. Bác An nên đầu tư mỗi loại trái phiếu bao nhiêu tiền để lợi nhuận thu được sau một năm là lớn nhất? A. 750 triệu cho trái phiếu chính phủ, 250 triệu cho trái phiếu ngân hàng và 200 triệu cho trái phiếu doanh nghiệp. B. 250 triệu cho trái phiếu chính phủ,750 triệu cho trái phiếu ngân hàng và 200 triệu cho trái phiếu doanh nghiệp. C. 200 triệu cho trái phiếu chính phủ, 250 triệu cho trái phiếu ngân hàng và 750 triệu cho trái phiếu doanh nghiệp. D. 750 triệu cho trái phiếu chính phủ, 200 triệu cho trái phiếu ngân hàng và 750 triệu cho trái phiếu doanh nghiệp. + Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi kilôgam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi kilôgam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất 1,6 kg thịt bò và 1,1 kg thịt lợn; giá tiền 1 kg thịt bò là 250 nghìn đồng; 1 kg thịt lợn là 160 nghìn đồng. Giả sử gia đình đó mua x kilôgam thịt bò và y kilôgam thịt lợn. số kilôgam lần lượt thịt bò, thịt lợn mà gia đình cần mua để chi phí là ít nhất là? + Lớp 12A có 10 học sinh biết chơi bóng đá, 7 học sinh biết chơi bóng chuyền, 6 học sinh biết chơi bóng rổ, có 4 học sinh biết chơi cả bóng đá, bóng chuyền; có 3 học sinh biết chơi cả bóng đá, bóng rổ; 2 học sinh biết chơi cả bóng chuyền, bóng rổ; 1 học sinh biết chơi cả ba môn thể thao này. Hỏi số học sinh biết chơi ít nhất 1 môn là? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi Toán 10 năm 2021 - 2022 cụm trường THPT - Hà Nội
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp cụm môn Toán 10 năm học 2021 – 2022 cụm trường THPT trực thuộc sở Giáo dục và Đào tạo Hà Nội.
Đề thi chọn học sinh giỏi Toán 10 năm 2021 - 2022 sở GDĐT Hà Nam
Đề thi chọn học sinh giỏi môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Nam gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 180 phút. Trích dẫn đề thi chọn học sinh giỏi Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Nam : + Cho parabol 2 P y x m x m 2 2 1 và đường thẳng 2 d y m x m m 1 5 3 (với m là tham số). Biết đường thẳng d cắt đồ thị P tại hai điểm phân biệt A B. Tìm điều kiện của m để AB 26. + Cho phương trình 2 x b x c 2 1 0 với b c. Biết phương trình có hai nghiệm dương 1 2 x x thỏa mãn 1 2 x x 4. a) Chứng minh 2 2 4 2 b b c b) Tìm giá trị lớn nhất của biểu thức 2 P b c b b b 6 3 1 2022. + Cho ABC nội tiếp đường tròn O R và có trọng tâm là G. Các đường thẳng AG BG CG theo thứ tự cắt đường tròn O tại điểm thứ hai là M N P. Biết 1 1 1 2 sin sin sin R.
Đề thi học sinh giỏi tỉnh Toán 10 năm 2021 - 2022 sở GDĐT Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào ngày 15 tháng 03 năm 2022. Trích dẫn đề thi học sinh giỏi tỉnh Toán 10 năm 2021 – 2022 sở GD&ĐT Hà Tĩnh: + Trong hệ tọa độ Oxy, cho tam giác ABC vuông tại A, gốc tọa độ O là trung điểm của cạnh BC. Đường phân giác trong góc B có phương trình (d): x + 2y – 5 = 0, đường thẳng AC đi qua điểm I(6;2). Tìm tọa độ các đỉnh của tam giác ABC. + Cho tam giác ABC vuông tại A (BC = a, CA = b, AB = c), đường cao AH, I là điểm thuộc đoạn AH sao cho AI = 2IH. a) Chứng minh rằng a2IA + 2b2IB + 2c2IC = 0. b) Biết góc ACB = 30°, tìm giá trị nhỏ nhất của biểu thức k = 2MA + 3MB + 7MC với M là điểm bất kỳ trong mặt phẳng chứa tam giác. + Cho hàm số f(x) = (x2 + mx + 1)/(x2 + x + 1) (m là tham số). Tìm m để với mọi a, b, c thì f(a), f(b), f(c) là độ dài ba cạnh của một tam giác.
Đề thi HSG Toán 10 năm 2021 - 2022 cụm THPT huyện Lục Nam - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi học sinh giỏi cấp cơ sở môn Toán lớp 10 năm học 2021 – 2022 cụm THPT huyện Lục Nam, tỉnh Bắc Giang; đề thi gồm 40 câu trắc nghiệm (14 điểm) và 03 câu tự luận (06 điểm), thời gian học sinh làm bài thi là 120 phút (không kể thời gian giao đề). Trích dẫn đề thi HSG Toán 10 năm 2021 – 2022 cụm THPT huyện Lục Nam – Bắc Giang : + Một cửa hàng bán đồ nam ở TT Bích Động gồm áo sơ mi, quần âu và áo phông. Ngày thứ nhất bán được 22 áo sơ mi, 12 quần âu và 18 áo phông, doanh thu là 12580000 đồng. Ngày thứ hai bán được 16 áo sơ mi, 10 quần âu và 20 áo phông, doanh thu là 10800000 đồng. Ngày thứ ba bán được 24 áo sơ mi, 15 quần âu và 12 áo phông, doanh thu là 12960000 đồng. Hỏi giá bán mỗi áo sơ mi, mỗi quần âu và mỗi áo phông là bao nhiêu? Biết giá từng loại trong ba ngày không thay đổi. A. 250000 đồng/áo sơ mi, 320000 đồng/quần âu, 180000 đồng/áo phông. B. 260000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. C. 250000 đồng/áo sơ mi, 330000 đồng/quần âu, 170000 đồng/áo phông. D. 200000 đồng/áo sơ mi, 300000 đồng/quần âu, 190000 đồng/áo phông. + Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10 / 2019 , giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20 h30 ; là 6 triệu đồng cho 15 giây/l lần quảng cáo vào khung giờ 16h00 -17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20 h30 và không quá 50 lần quảng cáo vào khung giờ 16 h00 17 h00  . Tổng số lần xuất hiện quảng cáo của công ty trên VTV1 nhiều nhất là bao nhiêu? + Cho tam giác ABC là tam giác đều có độ dài cạnh bằng 1. Trên các cạnh BC CA AB lần lượt lấy các điểm N M P sao cho 1 3 BN 2 3 CM AP x với 0 1 x. Biết rằng có hai giá trị của x để đường thẳng AN tạo với đường thẳng PM một góc 60, tính tổng của hai giá trị đó. + Cho tam giác ABC vuông tại A. Gọi là góc giữa hai đường trung tuyến BD và CK. Tìm giá trị nhỏ nhất của cos. + Cho tam giác ABC thỏa mãn AB AC 24 và sin sin sin cos cos B C A B C. Gọi M là trung điểm của cạnh BC và G là trọng tâm của tam giác ABC. Tìm diện tích tam giác MBG.