Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 10 môn Toán năm học 2017 2018 trường THPT Gia Bình số 1 Bắc Ninh

Nội dung Đề KSCL lớp 10 môn Toán năm học 2017 2018 trường THPT Gia Bình số 1 Bắc Ninh Bản PDF Đề KSCL Toán lớp 10 năm học 2017 – 2018 trường THPT Gia Bình số 1 – Bắc Ninh mã đề 121 gồm 3 trang với 20 câu hỏi trắc nghiệm khách quan và 3 bài toán tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào ngày 09, 10 tháng 03 năm 2018, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề KSCL Toán lớp 10 năm học 2017 -2018 : + Trong khi khai quật một ngôi mộ cổ, các nhà khảo cổ học đã tìm được một chiếc đĩa cổ hình tròn bị vỡ, để nghiên cứu các nhà khảo cổ cần khôi phục lại hình dạng chiếc đĩa này. Để xác định bán kính của chiếc đĩa, các nhà khảo cổ lấy 3 điểm trên chiếc đĩa và tiến hành đo đạc, được kết quả như hình vẽ (AB = 4,3 cm; BC = 3,7 cm; CA = 7,5 cm). Bán kính của chiếc đĩa này bằng (làm tròn tới hai chữ số sau dấu phẩy). + Một cửa hàng mua sách từ nhà xuất bản với giá 3 USD /cuốn. Cửa hàng bán sách với giá 15 USD/cuốn, tại giá bán này mỗi tháng cửa hàng sẽ bán được 200 cuốn. Cửa hàng có kế hoạch giảm giá để kích thích sức mua, và họ ước tính rằng cứ giảm đi 1 USD/cuốn thì mỗi tháng sẽ bán nhiều hơn 20 cuốn. Hỏi rằng, cửa hàng nên bán sách với giá bao nhiêu một cuốn để thu được lợi nhuận một tháng là nhiều nhất? [ads] + Mỗi lon bia Sài gòn có dạng hình trụ và có thể tích chứa là 330ml. Hãng bia muốn nhờ thiết kế vỏ lon bia sao cho lượng nhôm nguyên liệu bỏ ra là ít nhất. Nếu em là nhà thiết kế, thì em sẽ thiết kế vỏ lon bia có bán kính đáy và chiều cao lần lượt là bao nhiêu để thỏa mãn yêu cầu của hãng ( làm tròn tới 1 chữ số sau dấu phẩy). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề KSCL 8 tuần kì 2 Toán 10 năm 2023 - 2024 trường THPT Vũ Văn Hiếu - Nam Định
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng 8 tuần học kì 2 môn Toán 10 năm học 2023 – 2024 trường THPT Vũ Văn Hiếu, tỉnh Nam Định. Đề thi gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm trả lời ngắn; Tự luận. Đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL 8 tuần kì 2 Toán 10 năm 2023 – 2024 trường THPT Vũ Văn Hiếu – Nam Định : + Một hộp có 20 quả cầu gồm 14 quả cầu đỏ khác nhau và 6 quả cầu xanh khác nhau. Chọn ngẫu nhiên đồng thời 4 quả cầu. Tính xác suất để chọn đươc số quả cầu màu đỏ bằng số quả cầu màu xanh. Gọi S là tập hợp các số tự nhiên có hai chữ số. Chọn ngẫu nhiên đồng thời hai số từ tập hợp S. Tính xác suất để hai số được chọn có chữ số hàng đơn vị giống nhau. + Một đội văn nghệ có 20 người, trong đó 10 nam và 10 nữ. Hỏi có bao nhiêu cách chọn ra 5 người sao cho có ít nhất 2 nam và ít nhất 1 nữ trong 5 người đó. + Chỉ số IQ của một nhóm học sinh được thống kê như sau: 60 78 80 64 70 76 80 74 86 90 a) Tìm chỉ số IQ trung bình của nhóm học sinh trên. b) Tìm tứ phân vị của mẫu số liệu trên.
Đề kiểm tra định kỳ học kì 1 (HK1) lớp 10 môn Toán trường THPT Võ Thành Trinh An Giang
Nội dung Đề kiểm tra định kỳ học kì 1 (HK1) lớp 10 môn Toán trường THPT Võ Thành Trinh An Giang Bản PDF Đề kiểm tra định kỳ học kỳ 1 môn Toán lớp 10 trường THPT Võ Thành Trinh – An Giang gồm 4 mã đề, mỗi đề gồm 2 trang với 16 câu trắc nghiệm và 2 câu tự luận, thời gian làm bài 45 phút, tất cả các mã đề đều có đáp án . Trích dẫn đề thi : + Cho hai tập hợp A = {1; 2; 3; 4; 5} và B = {2; 4; 6; 8}. Xác định tập hợp A ∪ B. A. A ∪ B = {1; 3; 5} B. A ∪ B = {1; 2; 3; 4; 5; 6; 7; 8} C. A ∪ B = {1; 2; 3; 4; 5; 6; 8} D. A ∪ B = {2; 4} [ads] + Phủ định của mệnh đề “∀x ∈ R : x^2 + x + 2 > 0” là mệnh đề nào sau đây? A. ∃x ∈ R : x^2 + x + 2 < 0 B. ∀x ∈ R : x^2 + x + 2 < 0 C. ∃x ∈ R : x^2 + x + 2 ≤ 0 D. ∀x ∈ R : x^2 + x + 2 ≤ 0 + Hàm số nào trong các hàm số sau đây có đồ thị như hình bên? A. y = x − 3 B. y = 2x − 3 C. y = 4x − 6 D. y = −4x + 6
Đề kiểm tra định kỳ lần 2 lớp 10 môn Toán năm 2019 2020 trường THPT chuyên Bắc Ninh
Nội dung Đề kiểm tra định kỳ lần 2 lớp 10 môn Toán năm 2019 2020 trường THPT chuyên Bắc Ninh Bản PDF Đề kiểm tra định kỳ lần 2 Toán lớp 10 năm học 2019 – 2020 trường THPT chuyên Bắc Ninh gồm có hai đề riêng biệt: đề dành cho các lớp 10 chuyên Vật lý – chuyên Hóa học – chuyên Tin học và đề dành cho các lớp 10 chuyên Ngữ Văn – chuyên Sinh học – chuyên Tiếng Anh, kỳ thi được diễn ra trong giai đoạn giữa học kỳ 1 năm học 2019 – 2020. Trích dẫn đề kiểm tra định kỳ lần 2 Toán lớp 10 năm 2019 – 2020 trường THPT chuyên Bắc Ninh : + Cho hàm số y = -x^2 + (2m – 3)x + 1 – m^2 (trong đó m là tham số). a) Lập bảng biến thiên và vẽ đồ thị hàm số với m = 2. b) Tìm tất cả giá trị của m đề đồ thị hàm số cắt trục hoành tại hai điểm phân biệt khác O và nằm khác phía nhau đối với điểm O. c) Tìm điều kiện của tham số m để hàm số đã cho nghịch biến trên khoảng (0;2019). + Trên mặt phẳng tọa độ Oxy cho bốn điểm A(0;1), B(-1;3), C(5;6), D(4;3). a ) Chứng tỏ rằng bốn điểm đã cho tạo thành một hình thang có đáy là AD và BC. b) Biết I là điểm thỏa mãn 2.IA + 2.IB + 3.IC + 3.ID = 0. Chứng minh I nằm trên đường trung bình của hình thang tạo bởi bốn điểm đã cho. + Cho ba số thực không âm a, b, c thỏa mãn a + b + c = 3 và không có số nào lớn hơn 2. Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức A = √(1 + a) + √(1 + b) + √(1 + c).
Đề KSCL giữa HK1 Toán 10 năm 2018 - 2019 trường THPT Bùi Thị Xuân - TT. Huế
Đề KSCL giữa HK1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế mã đề 001 gồm 2 trang với 24 câu hỏi trắc nghiệm khách quan (chiếm 8 điểm) và 1 bài toán tự luận (2 điểm), yêu câu học sinh hoàn thành bài làm trong thời gian 45 phút, đề KSCL có đáp án và lời giải chi tiết. Trích dẫn đề KSCL giữa HK1 Toán 10 năm 2018 – 2019 trường THPT Bùi Thị Xuân – TT. Huế : + Biết đồ thị hàm số y = ax + b là đường thẳng đi qua K(5;-4) và vuông góc với đường thẳng y = x + 4 .Giá trị của biểu thức A = a + 2b bằng? + Cho hàm số y = x − 1 có đồ thị là đường thẳng ∆. Đường thẳng ∆ tạo với hai trục tọa độ một tam giác có diện tích bằng? [ads] + Cho hàm số y = x^2 – 2x – 1. Mệnh đề nào sau đây sai? A. Hàm số giảm trên khoảng (−∞;1). B. Đồ thị hàm số có trục đối xứng x = −2. C. Đồ thị hàm số nhận I(1;-2) làm đỉnh. D. Hàm số tăng trên khoảng(1;+∞).