Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 2020

Nội dung Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 2020 Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020, kỳ thi diễn ra trong các ngày 27 và 28 tháng 12 năm 2019. Đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 (VMO 2019 – 2020) gồm tổng cộng 07 bài toán: Giới hạn dãy số, Bất đẳng thức, Dãy số nguyên, Hình học phẳng, Hệ phương trình, Hình học phẳng, Tổ hợp. Tổng quan về đề thi, có thể nói đề ngày 1 so với “cùng kỳ năm trước” quả thật rất khác. Các câu hỏi đều có ý a để dẫn dắt gợi mở và thậm chí là cho điểm. Ý tưởng tuy không mới mẻ bằng năm trước nhưng cũng là các thử thách đáng kể với thí sinh. Hầu hết các thí sinh nếu ôn luyện cẩn thận sẽ làm tốt 4 ý a, và có thể làm thêm 1 ý b nào đó nữa. Các ý b có độ khó cũng khá tương đương nhau, tùy vào sở trường của thí sinh, nhưng nhìn chung số bạn làm được trọn vẹn cả bài hình là không nhiều. Ngày thi thứ hai có một bất ngờ lớn khi xuất hiện câu biện luận hệ phương trình cũng như ý tổ hợp a quá nhẹ nhàng. Các câu hệ a và tổ a xem như cho điểm hoàn toàn. Cả câu hình và tổ b cũng ở mức trung bình (xây dựng mô hình khá đơn giản). Tuy nhiên, câu hệ b và tổ c quả thực là thách thức lớn, đòi hỏi phải kỹ năng xử lý tình huống tốt. Nhưng nói chung, đề thi năm nay mới mẻ, đòi hỏi thí sinh vừa phải nắm chắc kiến thức, vừa phải có ít nhiều sáng tạo mới có thể làm trọn vẹn được. Trích dẫn đề thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2019 – 2020 : + Cho số nguyên dương n > 1. Ký hiệu T là tập hợp tất cả các bộ có thứ tự (x, y, z) trong đó x, y, z là các số nguyên dương đôi một khác nhau và 1 ≤ x, y, z ≤ 2n. Một tập hợp A các bộ có thứ tự (u, v) được gọi là “liên kết” với T nếu với mỗi phần tử (x, y, z) ∈ T thì {(x, y),(x, z),( y, z)} ∩ A = ∅. a) Tính số phần tử của T. b) Chứng minh rằng tồn tại một tập hợp liên kết với T có đúng 2n(n − 1) phần tử. c) Chứng minh rằng mỗi tập hợp liên kết với T có không ít hơn 2n(n− 1) phần tử. + Cho dãy số (an) xác định bởi a1 = 5, a2 = 13 và an+1 = 5an – 6an-1 với mọi n lớn hơn hoặc bằng 2. a) Chứng minh rằng hai số hạng liên tiếp của dãy trên nguyên tố cùng nhau. b) Chứng minh rằng nếu p là ước nguyên tố của a2^k thì (p – 1) chia hết cho 2^(k + 1) với mọi số tự nhiên k. [ads] + Cho tam giác nhọn không cân ABC nội tiếp đường tròn (O) và có trực tâm H. Gọi D, E, F lần lượt là các điểm đối xứng của O qua các đường thẳng BC, CA, AB. a) Gọi Ha là điểm đối xứng của H qua BC, A’ là điểm đối xứng của A qua O và Oa là tâm của đường tròn ngoại tiếp tam giác BOC. Chứng minh rằng HaD và OaA’ cắt nhau trên (O). b) Lấy điểm X sao cho tứ giác AXDA’ là hình bình hành. Chứng minh rằng ba đường tròn ngoại tiếp các tam giác AHX, ABF và ACE có một điểm chung thứ hai khác A.

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng lớp 12 môn Toán lần 1 năm 2023 2024 trường THPT chuyên Thái Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán lần 1 năm 2023 2024 trường THPT chuyên Thái Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán lớp 12 lần 1 năm học 2023 – 2024 trường THPT chuyên Thái Bình, tỉnh Thái Bình (mã đề 123).
Đề khảo sát chất lượng lớp 12 môn Toán lần 1 năm 2023 2024 sở GD ĐT Ninh Bình
Nội dung Đề khảo sát chất lượng lớp 12 môn Toán lần 1 năm 2023 2024 sở GD ĐT Ninh Bình Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát đánh giá chất lượng giáo dục môn Toán lớp 12 THPT & GDTX lần thứ nhất năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Ninh Bình, hướng đến kỳ thi tốt nghiệp THPT 2024 và tuyển sinh vào Đại học, Cao đẳng; kỳ thi được diễn ra vào thứ Sáu ngày 24 tháng 11 năm 2023; đề thi có đáp án mã đề 001 – 002 – 003 – 004 – 005 – 006 – 007 – 008 – 009 – 010 – 011 – 012 – 013 – 014 – 015 – 016 – 017 – 018 – 019 – 020 – 021 – 022 – 023 – 024. Trích dẫn Đề khảo sát chất lượng Toán lớp 12 lần 1 năm 2023 – 2024 sở GD&ĐT Ninh Bình : + Bạn Tuệ giành được học bổng 160.000 USD, bằng 80% chi phí học tập, ăn ở trong 4 năm học tại trường Đại học X, kể từ năm học 2023 – 2024. Số 20% chi phí còn lại bạn được trường cho vay không lãi trong suốt 4 năm học đại học. Từ ngày 01/9/2027, trường bắt đầu tính lãi 0,25%/tháng (thể thức lãi kép) và kể từ đó, cứ vào ngày đầu tiên của mỗi tháng tiếp theo, bạn Tuệ sẽ phải trả một số tiền không đổi cho nhà trường trong vòng 4 năm thì sẽ trả hết cả vốn lẫn lãi. Hỏi số tiền mỗi tháng bạn Tuệ sẽ phải trả cho trường đại học là bao nhiêu USD? (Kết quả làm tròn đến hàng phần chục). + Cho hàm số bậc ba y = f(x) và hàm số bậc nhất y = g(x) có đồ thị lần lượt là đường cong và đường thẳng trong hình vẽ bên. Gọi A, B lần lượt là giao điểm của đồ thị hàm số y = f(x) và y = g(x) với trục tung. Biết AB = 4, bất phương trình f(x) − 4 ≤ g(x) có bao nhiêu nghiệm nguyên trên đoạn [−10;10]? + Cho hình lập phương ABCD.A′B′C′D′. Hình hộp chữ nhật MNPQ.M′N′P′Q′ có các đỉnh thuộc các mặt của hình lập phương, đồng thời hai mặt (MNN′M′) và (PQQ′P′) chia đoạn A′C thành ba phần bằng nhau. Tỉ số thể tích của khối hộp chữ nhật MNPQ.M′N′P′Q′ và khối lập phương ABCD.A′B′C′D′ là?
Đề kiểm tra lần 1 lớp 12 môn Toán năm 2023 2024 trường THPT Lý Thường Kiệt Bắc Ninh
Nội dung Đề kiểm tra lần 1 lớp 12 môn Toán năm 2023 2024 trường THPT Lý Thường Kiệt Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề kiểm tra chất lượng lần 1 môn Toán lớp 12 năm học 2023 – 2024 trường THPT Lý Thường Kiệt, tỉnh Bắc Ninh; đề thi gồm 07 trang, hình thức 100% trắc nghiệm với 50 câu hỏi và bài toán, thời gian làm bài 90 phút; đề thi có đáp án mã đề 201 202 203 204. Trích dẫn Đề kiểm tra lần 1 Toán lớp 12 năm 2023 – 2024 trường THPT Lý Thường Kiệt – Bắc Ninh : + Cho hình chóp S ABCD có đáy ABCD là hình chữ nhật với AD AB a 2 2. Cạnh bên SA a 2 và vuông góc với đáy. Gọi M N lần lượt là trung điểm của SB và SD. Tính khoảng cách d từ S đến mặt phẳng (AMN). + Cho hàm số có đồ thị là hình bên dưới. Tìm tất cả các giá trị thực của tham số để phương trình 3 2x 6x m 1 0 có 3 nghiệm phân biệt trong đó có 2 nghiệm âm. + Cho hàm số 2 2 y fx 1 x có đồ thị (C). Tiếp tuyến của (C) tại điểm có hoành độ x = 2 có hệ số góc bằng? File WORD (dành cho quý thầy, cô):
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 - 2024 sở GDĐT An Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh An Giang; kỳ thi được diễn ra vào ngày 13 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2023 – 2024 sở GD&ĐT An Giang : + Người ta dùng bốn màu: Xanh, Đỏ, Tím, Vàng để sơn 15 thanh chắn lắp song song và cách đều nhau của một ngôi trường mẫu giáo. Hỏi có bao nhiêu cách sơn sao cho hai thanh kề nhau thì khác màu và hai thanh đối xứng nhau qua thanh chính giữa thì cùng màu? + Một con cào cào nhảy ngẫu nhiên trên bốn chiếc lá. Trong mỗi lượt, xác suất để cào cào nhảy tới mỗi chiếc lá trong ba chiếc lá còn lại đều bằng 1 3. Tính xác suất để con cào cào qua bốn lần nhảy quay trở lại vị trí ban đầu? + Trong mặt phẳng tọa độ Oxy, cho elip (𝐸): 𝑥 2 25 𝑦 2 16 1 và điểm 𝑀(2; 1). Viết phương trình đường thẳng (𝑑) đi qua điểm 𝑀 cắt (𝐸) tại hai điểm 𝐴, 𝐵 sao cho trung điểm của đoạn thẳng 𝐴𝐵 nằm trên đường thẳng (∆): 𝑦 = 2𝑥.