Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT Nam Định

Nội dung Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 2023 sở GD ĐT Nam Định Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Nam Định Đề thi chọn học sinh giỏi lớp 9 môn Toán năm 2022 - 2023 sở GD ĐT Nam Định Sytu xin gửi đến quý thầy cô và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán lớp 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Nam Định. Kỳ thi sẽ diễn ra vào thứ Sáu, ngày 10 tháng 03 năm 2023. Đây là một số câu hỏi trong đề thi: 1. Cho tam giác nhọn ABC với AB < AC nội tiếp đường tròn (O). Gọi BH và CQ là hai đường cao của tam giác ABC. Tiếp tuyến tại B và tại C của đường tròn (O) cắt nhau tại M. Đoạn thẳng OM cắt BC và cắt đường tròn (O) lần lượt tại N và D. Tia AD cắt BC tại F; AM cắt BC tại E và cắt đường tròn (O) tại điểm thứ hai là K (K khác A). 2. Gọi I là tâm đường tròn ngoại tiếp tam giác AFN. Chứng minh rằng IOM + ADN = 180. 3. Qua E kẻ đường thẳng vuông góc với BC cắt QH tại G. Chứng minh ba điểm A, G, N thẳng hàng. 4. Lấy 2018 điểm phân biệt ở miền trong của một ngũ giác lồi cùng với 5 đỉnh của ngũ giác đó ta được 2023 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Chứng minh rằng tồn tại một tam giác có diện tích không vượt qua 1/4039 đơn vị từ 2023 điểm đã cho. 5. Xét a, b, c là các số thực dương thỏa mãn a + b + c >= 3. Hãy tìm giá trị lớn nhất của biểu thức Q. Đây là một số câu hỏi thú vị và thách thức cho các em học sinh lớp 9 chứng minh năng lực và kiến thức Toán của mình. Chúc các em ôn tập tốt và đạt kết quả cao trong kỳ thi sắp tới!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Cao Bằng
Đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Cao Bằng gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 90 phút. Trích dẫn đề thi học sinh giỏi tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Cao Bằng : + Một đoàn học sinh đi tham quan khu di tích lịch sử hang Pác Bó bằng ô tô. Nếu mỗi xe chỉ chở 22 học sinh thì còn thừa một học sinh. Nếu bớt đi một ô tô thì có thể phân phối đều số học sinh vào các xe còn lại. Hỏi lúc đầu có bao nhiều xe ô tô và có bao nhiêu học sinh đi tham quan, biết rằng số học sinh trên mỗi xe không quá 32 em. + Chứng minh rằng tổng A = 1 + 2 + 2^2 + … + 2^2019 chia hết cho 15. + Cho nửa đường tròn (O) có đường kính AB = 2R; CD là dây cung di động trên nửa đường tròn sao cho CD = R và C thuộc cung AD (C khác A; D khác B). AD cắt BC tại H, hai đường thẳng AC và BD cắt nhau tại F. a) Chứng minh tứ giác CFDH nội tiếp. b) Chứng minh: CF.CA = CH.CB. c) Gọi I là trung điểm của HF. Chứng minh tia OI là tia phân giác của góc COD. d) Chứng minh rằng khi dây cung CD di động trên nửa đường tròn, diện tích tam giác OID có giá trị không đổi.
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 - 2021 sở GDĐT Nghệ An
Đề thi học sinh giỏi cấp tỉnh Toán 9 năm học 2020 – 2021 sở GD&ĐT Nghệ An gồm đề bảng A và đề bảng B, đề thi có đáp án và lời giải chi tiết (lời giải được thực hiện bởi các thành viên Tạp Chí Và Tư Liệu Toán Học). Trích dẫn đề thi học sinh giỏi cấp tỉnh Toán 9 năm 2020 – 2021 sở GD&ĐT Nghệ An : + Cho tam giác nhọn ABC có D, E, F lần luợt là chân các đường cao kẻ từ ba đỉnh A, B, C của tam giác. Gọi H là trực tâm tam giác ABC và K là trung điềm của HC. a) Chứng minh rằng 4 điểm E, K, D, F cùng thuộc một dường tròn. b) Đường thẳng đi qua K song song với BC cắt DF tại M. Trên tia DE lấy điểm P sao cho MAP = BAC. Chứng minh rằng SAMF/SAMP = MF/MP (trong đó SAMF, SAMP lần lượt là diện tích các tam giác AMF và AMP). + Cho các số thực dương x, y, z thỏa mãn điều kiện x2 + y2 + z = 3xy. Chứng minh rằng. + Cho đa giác đều có 2021 đỉnh, sao cho mỗi đỉnh của đa giác đó chỉ được tô bằng một trong hai màu xanh hoặc đỏ. Chứng minh rằng tồn tại 3 đỉnh của đa giác đã cho là các đỉnh của một tam giác cân mà các đỉnh đó được tô cùng một màu.
Đề thi học sinh giỏi Toán THCS năm 2020 - 2021 sở GDĐT An Giang
Ngày 20 tháng 03 năm 2021, sở Giáo dục và Đào tạo tỉnh An Giang tổ chức kỳ thi chọn học sinh giỏi cấp Trung học Cơ sở môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán THCS năm 2020 – 2021 sở GD&ĐT An Giang gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút.
Đề thi học sinh giỏi Toán 9 năm 2020 - 2021 sở GDĐT thành phố Hồ Chí Minh
Thứ Tư ngày 17 tháng 03 năm 2021, sở Giáo dục và Đào tạo thành phố Hồ Chí Minh tổ chức kỳ thi chọn học sinh giỏi lớp 9 cấp thành phố môn Toán năm học 2020 – 2021. Đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh gồm 01 trang với 06 bài toán dạng tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi học sinh giỏi Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Hồ Chí Minh : + Cho tam giác ABC vuông tại A có đường phân giác trong BD (D thuộc AC). Đường tròn (BCD) cắt cạnh AB tại E. Chứng minh AE + AB = BC. + Cho bốn số thực a, b, c, d thỏa điều kiện a2 + b2 + c2 + d2 = 4. Chứng minh bất đẳng thức: (a + 2)(b + 2) >= cd. + Cho tứ giác ABCD (AB không song song với CD) nội tiếp đường tròn (O) và M là điểm chính giữa của cung nhỏ AB. Các dây MC, MD cắt AB lần lượt tại các điểm F, E. a) Chứng minh tứ giác CDEF nội tiếp. b) Gọi I là giao điểm của MC và BD. Gọi J là giao điểm của MD và AC. Chứng minh: IJ song song với AB. c) Đường thẳng IJ cắt AD, BC, CD lần lượt tại các điểm P, Q, K. Chứng minh: KP.KQ = KI.KJ.