Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn đội tuyển HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương

Nội dung Đề chọn đội tuyển HSG lớp 9 môn Toán năm 2022 2023 phòng GD ĐT Kim Thành Hải Dương Bản PDF Sytu xin gửi đến quý thầy cô giáo và các em học sinh lớp 9 đề thi chọn đội tuyển chính thức học sinh giỏi tham dự kỳ thi cấp tỉnh môn Toán lớp 9 năm học 2022 - 2023 tại phòng Giáo dục và Đào tạo UBND huyện Kim Thành, tỉnh Hải Dương. Đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn từ Đề chọn đội tuyển HSG Toán lớp 9 năm 2022 - 2023 phòng GD&ĐT Kim Thành - Hải Dương: Cho a, b, c, k là các số tự nhiên thỏa mãn: \(333^2 = abc + k\). Chứng minh rằng \(k - 1\) chia hết cho 3. Tìm x, y nguyên biết: \(2x^2 + 7y^2 = 4xy + 12x - 5y\). Cho ∆ABC vuông tại A, đường cao AH. Các đường phân giác của góc BAH, CAH cắt BC lần lượt tại E, F. Chứng minh: \(\frac{BC}{CH} = \frac{EH}{BE}\) và tâm đường tròn ngoại tiếp ∆AEF trùng với tâm đường tròn nội tiếp ∆ABC. Kí hiệu \(d_1, d_2\) lần lượt là các đường thẳng vuông góc với BC tại E, F. Chứng minh rằng \(d_1, d_2\) tiếp xúc với đường tròn nội tiếp ∆ABC. Cho tam giác ABC. Gọi \(l_1, l_2, l_3\) lần lượt là độ dài các đường phân giác trong của góc A, B, C. Chứng minh rằng \(2\cos^2 A = \frac{bc}{l_1}\) và \(\frac{1}{l_1} = \frac{1}{l_2} + \frac{1}{l_3}\). File WORD (dành cho quý thầy, cô): [INSERT LINK TO WORD FILE]

Nguồn: sytu.vn

Đọc Sách

Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.
Đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 - 2022 sở GDĐT Gia Lai
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp tỉnh năm học 2021 – 2022 sở Giáo dục và Đào tạo tỉnh Gia Lai; kỳ thi được diễn ra vào Chủ Nhật ngày 17 tháng 04 năm 2022. Trích dẫn đề thi học sinh giỏi Toán 9 cấp tỉnh năm 2021 – 2022 sở GD&ĐT Gia Lai : + Cho một đa giác có 10 đỉnh như hình vẽ ở bên (bốn đỉnh: A, B, C, D hoặc B, C, D, E hoặc C, D, E, F hoặc … hoặc J, A, B, C được gọi là bốn đỉnh liên tiếp của đa giác). Các đỉnh của đa giác được đánh số một cách tùy ý bởi các số nguyên thuộc tập hợp M = {1; 2; 3; 4; 5; 6; 7; 8; 9; 10} (biết mỗi đỉnh chỉ được đánh bởi một số, các số được đánh ở các đỉnh là khác nhau). Chứng minh rằng ta luôn tìm được 4 đỉnh liên tiếp của đa giác được đánh số thuộc tập hợp M mà tổng các số đó lớn hơn 21. + Cho hình vuông ABCD nội tiếp đường tròn (O;R). Trên cung nhỏ AD lấy điểm E (E không trùng với A và D). Tia EB cắt các đường thẳng AD, AC lần lượt tại I và K. Tia EC cắt các đường thẳng DA, DB lần lượt tại M, N. a) Chứng minh rằng IAN = NBI. b) Khi điểm M ở vị trí trung điểm của AD. Hãy tính độ dài đoạn AE theo R. + Cho số p = n4 – 11n2 + 49 với n thuộc N. Hãy tìm các giá trị của n để p là số nguyên tố.