Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Lạng Sơn

Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Lạng Sơn Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn Đề thi tuyển sinh THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Lạng Sơn Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán của sở GD và ĐT Lạng Sơn bao gồm 4 bài toán tự luận, với lời giải chi tiết dưới đây. Trong đó có bài toán sau: Cho nửa đường tròn tâm O, đường kính AB. Dựng tiếp tuyến Ax (Ax và nửa đường tròn cùng thuộc nửa mặt phẳng bờ AB). C là một điểm nằm trên nửa đường tròn (C không trùng A và B), dựng tiếp tuyến Cy của nửa đường tròn (O) cắt Ax tại D. Kẻ CH vuông góc với AB (H thuộc AB), BD cắt (O) tại điểm thứ hai là K và cắt CH tại M. Gọi J là giao điểm của OD và AC. Ta có: a) Chứng minh rằng tứ giác AKMH nội tiếp được một đường tròn. b) Chứng minh rằng tứ giác CKJM nội tiếp được một đường tròn (O1). c) Chứng minh DJ là tiếp tuyến của đường tròn (O1). Qua bài toán trên, ta cần sử dụng kiến thức về hình học định lí và kỹ năng suy luận để giải quyết vấn đề. Hãy cẩn thận và tỉ mỉ với từng bước giải, để đạt được kết quả chính xác nhất.

Nguồn: sytu.vn

Đọc Sách

Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lai Châu
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lai Châu gồm 5 bài toán tự luận, có lời giải chi tiết.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Lâm Đồng
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Lâm Đồng gồm 5 bài toán tự luận. Trích một số bài toán trong đề: + Từ điểm P ngoài đường tròng (O), kẻ hai tiếp tuyến PA, PB với đường tròn (A, B là hai tiếp điểm). Gọi M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M (CD không đi qua O và CD không trùng với AB ). Hai tiếp tuyến của đường tròn (O) tại C và D cắt nhau ở Q. Chứng minh rằng OP vuông góc với PQ. + Chứng minh rằng nếu n là là tự nhiên lớn hơn 1 thì 2^n – 1 không thể là số chính phương.
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 - 2018 môn Toán sở GD và ĐT Bắc Giang
Đề thi tuyển sinh lớp 10 THPT chuyên năm học 2017 – 2018 môn Toán sở GD và ĐT Bắc Giang gồm 5 bài toán tự luận.
Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin)
Đề thi tuyển sinh lớp 10 THPT năm học 2017 – 2018 môn Toán sở GD và ĐT Hà Nội (Chuyên Tin) gồm 5 bài toán tự luận, có lời giải chi tiết.