Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giữa kì 2 Toán 9 năm 2022 - 2023 trường THCS Tam Khương - Hà Nội

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2022 – 2023 trường THCS Tam Khương, quận Đống Đa, thành phố Hà Nội. Trích dẫn Đề giữa kì 2 Toán 9 năm 2022 – 2023 trường THCS Tam Khương – Hà Nội : + Giải bài toán bằng cách lập phương hoặc hệ phương trình: Trong tháng thứ nhất hai tổ sản xuất được 600 sản phẩm. Do cải tiến kĩ thuật nên sang tháng thứ hai, tổ I đã vượt mức 10% và tổ II đã vượt mức 20%. Vì vậy tháng thứ hai cả hai tổ sản xuất được 685 sản phẩm. Hỏi trong tháng thứ nhất mỗi tổ sản xuất được bao nhiêu sản phẩm? + Cho hàm số y = x2 có đồ thị là parabol (P) và hàm số y = 2x + 3 có đồ thị là đường thẳng (d). a) Vẽ đồ thị hai hàm số trên cùng một hệ trục tọa độ Oxy. b) Gọi M và N là giao điểm của (d) với (P). Tính diện tích tam giác OMN. + Cho đường tròn (O) và điểm A nằm ngoài đường tròn. Từ A kẻ tiếp tuyến AM, AN tới đường tròn (M, N là các tiếp điểm). 1. Chứng minh: Bốn điểm A, M, O, N cùng thuộc một đường tròn. 2. Trên cung nhỏ MN lấy điểm B khác M, N và B không là điểm chính giữa cung MN. Tia AB cắt đường tròn (O) tại điểm thứ hai C. Chứng minh: AM² = AB.AC. 3. Gọi H là giao điểm của AO và MN. Chứng minh: AHB = ACO.

Nguồn: toanmath.com

Đọc Sách

Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Võ Trường Toản - BR VT
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Võ Trường Toản, tỉnh Bà Rịa – Vũng Tàu; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề giữa kì 2 Toán 9 năm 2023 – 2024 trường THCS Võ Trường Toản – BR VT : + Giải bài toán bằng cách lập phương trình, hệ phương trình: Hai vòi nước cùng chảy vào bể không có nước thì sau 16 giờ đầy bể. Nếu người ta mở vòi thứ nhất chảy trong 3 giờ rồi khóa lại và mở vòi thứ hai chảy trong 6 giờ thì được 25% bể. Tính thời gian mỗi vòi chảy một mình đầy bể. + Cho đường tròn tâm O, đường kính AB, vẽ tia tiếp tuyến Bx. M là điểm thuộc đường tròn (M khác điểm chính giữa cung AB). Tiếp tuyến tại M cắt Bx tại C. a) Chứng minh: Tứ giác BCMO nội tiếp. b) Chứng minh: AM // OC. c) Kẻ MH AB gọi I là giao điểm của AC và MH. Chứng minh: IH = IM. + Trong một đường tròn, góc tạo bởi tia tiếp tuyến và dây cung và góc nội tiếp cùng chắn một cung thì: A. bằng một nửa. B. gấp đôi. C. bằng nhau.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Ngọc Lâm - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Ngọc Lâm, quận Long Biên, thành phố Hà Nội; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa kì 2 Toán 9 năm 2023 - 2024 trường THCS Phúc Đồng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kì 2 môn Toán 9 năm học 2023 – 2024 trường THCS Phúc Đồng, quận Long Biên, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 13 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm.
Đề giữa học kỳ 2 Toán 9 năm 2023 - 2024 trường THCS Hai Bà Trưng - TP HCM
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra giữa học kỳ 2 môn Toán 9 năm học 2023 – 2024 trường THCS Hai Bà Trưng, quận 3, thành phố Hồ Chí Minh. Trích dẫn Đề giữa học kỳ 2 Toán 9 năm 2023 – 2024 trường THCS Hai Bà Trưng – TP HCM : + Cho phương trình: 2×2 + 3x – 2 = 0 có hai nghiệm là x1 và x2. a) Tính tổng và tích của hai nghiệm x1 và x2. b) Không giải phương trình, hãy tính giá trị của biểu thức: A = x12 + x22. + Bạn Bình tiêu thụ 10,4 ca-lo cho mỗi phút bơi và 4,8 ca-lo mỗi phút chạy bộ. Bạn Bình cần tiêu thụ tổng cộng 324 ca-lo trong 50 phút với hai hoạt động trên. Vậy bạn Bình cần bao nhiêu thời gian cho mỗi hoạt động? + Cho tam giác SMN nhọn nội tiếp đường tròn (O) (SM < SN). Ba đường cao SI, MF, NE của tam giác SMN cắt nhau tại D. a) Chứng minh EFNM là tứ giác nội tiếp. b) Đường thẳng SI cắt đường tròn (O) tại A (A khác S). Qua A vẽ đường thẳng vuông góc với SN, đường thẳng này cắt MN tại H, cắt đường tròn (O) tại K (K khác A). Chứng minh HA.HK = HM.HN. c) Gọi T là giao điểm của FE và NM; ST cắt đường tròn (O) tại C (C khác S). Chứng minh ba điểm K, F, C thẳng hàng.