Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Lục Nam Bắc Giang

Nội dung Đề khảo sát lần 1 lớp 10 môn Toán năm 2023 2024 trường THPT Lục Nam Bắc Giang Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi khảo sát chất lượng lần 1 môn Toán lớp 10 năm học 2023 – 2024 trường THPT Lục Nam, tỉnh Bắc Giang; đề thi có đáp án trắc nghiệm và hướng dẫn chấm điểm tự luận. Trích dẫn Đề khảo sát lần 1 Toán lớp 10 năm 2023 – 2024 trường THPT Lục Nam – Bắc Giang : + Từ hai vị trí A B người ta quan sát một cái cây (hình vẽ). Lấy C là điểm gốc cây, D là điểm ngọn cây. Gọi A và B là hai điểm cùng thẳng hàng với điểm H thuộc chiều cao CD của cây sao cho AB CD tại H. Người ta đo được AB m 10 HC m 17 α 63 β 48. Chiều cao CD của cây gần với giá trị nào sau đây? + Lớp 10A có 37 học sinh làm bài kiểm tra môn toán. Đề bài gồm có 3 bài toán. Sau khi kiểm tra, cô giáo tổng hợp được kết quả như sau: Có 20 em giải được bài toán thứ nhất, 14 em giải được bài toán thứ hai, 10 em giải được bài toán thứ ba, 5 em giải được bài toán thứ hai và thứ ba, 2 em giải được bài toán thứ nhất và thứ hai, 6 em giải được bài toán thứ nhất và thứ ba, chỉ có 1 học sinh giải được cả ba bài toán. Hỏi lớp học đó có bao nhiêu học sinh không giải được bài toán nào? + Cho hàm số 2 yx x m 4 32 (với m là tham số). a) Tìm giá trị của tham số m để đồ thị hàm số đi qua điểm A(4;5). b) Tìm các giá trị của tham số m để đồ thị hàm số đã cho cắt trục hoành tại ít nhất một điểm có hoành độ thuộc khoảng (1;4). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn HSG Toán 10 năm 2023 - 2024 trường THPT Diễn Châu 2 - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp trường môn Toán 10 năm học 2023 – 2024 trường THPT Diễn Châu 2, tỉnh Nghệ An; đề thi có đáp án và hướng dẫn chấm điểm. Cấu trúc đề: PHẦN 1 – TRẮC NGHIỆM KHÁCH QUAN (8 điểm). A. TRẮC NGHIỆM NHIỀU LỰA CHỌN (12 câu – 3 điểm) – Thí sinh trả lời từ câu 1 đến câu 12, mỗi câu thí sinh chỉ chọn một phương án. B. TRẮC NGHIỆM ĐÚNG SAI (4 câu – 4 điểm) – Thí sinh trả lời từ câu 1 đến câu 4. Mỗi ý trong câu, thí sinh chọn đúng hoặc sai. C. TRẮC NGHIỆM TRẢ LỜI NGẮN (2 câu – 1 điểm) – Thí sinh trả lời từ câu 1 đến câu 2. PHẦN 2 – TỰ LUẬN (12 điểm).
Đề thi chọn HSG Toán 10 năm 2023 - 2024 trường THPT Đào Duy Từ - Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi môn Toán 10 năm học 2023 – 2024 trường THPT Đào Duy Từ, tỉnh Thanh Hóa. Đề thi được biên soạn theo định dạng trắc nghiệm mới nhất, với cấu trúc gồm 03 phần: Câu trắc nghiệm nhiều phương án lựa chọn; Câu trắc nghiệm đúng sai; Câu trắc nghiệm trả lời ngắn. Đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề thi chọn HSG Toán 10 năm 2023 – 2024 trường THPT Đào Duy Từ – Thanh Hóa : + Để tổ chức cho đoàn viên ưu tú khối 12 đi thực tế. Đoàn trường THPT Đào Duy Từ đã thuê xe để đưa 180 đoàn viên và 8 tấn hành lý đi thực tế. Nơi thuê xe có hai loại xe A và B trong đó xe A có 10 chiếc, xe B có 9 chiếc. Một xe loại A cho thuê với giá 5 triệu đồng và một xe loại B cho thuê với giá 4 triệu đồng. Biết rằng mỗi xe loại A có thể trở tối đa 30 người và 0,8 tấn hàng, mỗi xe loại B có thể trở tối đa 20 người và 1,6 tấn hàng. Tìm tổng số xe cần thuê cả hai loại xe A và B sao cho chi phí thuê xe là thấp nhất. + Một người có một miếng đất hình tam giác ABC (hình vẽ dưới) với AB m 10 AC m 18 BC m 25. Ông ấy muốn chia miếng đất thành hai phần có diện tích bằng nhau cho hai người con của ông ta. Tuy nhiên vì phần đất phía AB AC là hai mặt đường nên người đó phải chia theo đoạn thẳng MN (hình vẽ) để 2 người con đều có 2 phần mặt đường. Sau đó người cha phải xây đoạn tường MN cao 2m để chia đất, chi phí để xây mỗi mét vuông tường hết 200.000 đồng. Số triệu đồng (làm tròn đến hàng phần trăm) chi phí ít nhất để xây đoạn tường MN bằng bao nhiêu? + Người ta dùng100 số nguyên dương đầu tiên để đánh số cho 100 tấm thẻ (mỗi thẻ đánh một số). Chọn ngẫu nhiên bốn thẻ trong 100 thẻ đó. Tính xác suất để chọn được bốn thẻ sao cho tích của các số ghi trên bốn thẻ chia hết cho 9 (quy tròn đến phần trăm).