Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 - 2024 sở GDĐT Vĩnh Phúc

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán (chuyên) năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi dành cho thí sinh thi vào lớp chuyên Toán và chuyên Tin học. Trích dẫn Đề tuyển sinh lớp 10 môn Toán (chuyên) năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Tìm tất cả các cặp số nguyên (x;y) thỏa mãn đẳng thức (y + 2)x2 + 1 = y2. Tìm tất cả các số nguyên dương n sao cho 3n + 1, 11n + 1 là các số chính phương và n + 3 là số nguyên tố. + Cho tam giác ABC có ba góc nhọn, AB < AC và nội tiếp đường tròn (O). Đường thẳng AO cắt đường thẳng BC tại điểm E. Gọi M là trung điểm của đoạn thẳng BC. Đường thẳng AM cắt đường tròn (O) tại điểm N (N khác A). Các tiếp tuyến của đường tròn (O) tại các điểm B, C cắt nhau tại điểm D. a) Chứng minh AOND là tứ giác nội tiếp và tia DO là phân giác của góc ADN. b) Đường thẳng AD cắt đường tròn (O) tại điểm P (P khác A). Đường tròn ngoại tiếp tam giác AME cắt đường tròn (O) tại điểm F (F khác A). Chứng minh AB.PC = AC.PB và ba điểm E, F, P thẳng hàng. c) Kẻ đường kính AK của đường tròn (O). Chứng minh ba điểm D, K, F thẳng hàng và đường thẳng FN đi qua trung điểm của đoạn thẳng DM. + Sau khi tổ chức một trận đấu giao hữu giữa hai đội bóng lớp 9A và 9B, Ban tổ chức có 11 gói kẹo muốn chia cho 2 đội. Mỗi đội được chia 5 gói làm phần thưởng và 1 gói Ban tổ chức giữ lại để liên hoan. Biết rằng dù chọn bất kì gói nào để giữ lại, Ban tổ chức luôn có thể chia 10 gói còn lại cho 2 đội mà tổng số viên kẹo trong 5 gói cho mỗi đội là bằng nhau. Chứng minh rằng 11 gói kẹo đó phải có số viên kẹo bằng nhau.

Nguồn: toanmath.com

Đọc Sách

Tuyển chọn các đề thi tuyển sinh vào môn Toán Nguyễn Hoàng Nam
Nội dung Tuyển chọn các đề thi tuyển sinh vào môn Toán Nguyễn Hoàng Nam Bản PDF - Nội dung bài viết Tuyển chọn đề thi Toán Nguyễn Hoàng Nam 2013 - 2014 Tuyển chọn đề thi Toán Nguyễn Hoàng Nam 2013 - 2014 Đề thi Toán Nguyễn Hoàng Nam là bộ sưu tập các câu hỏi chất lượng được lựa chọn từ các tỉnh thành trên cả nước trong năm học 2013 - 2014. Bên cạnh đó, sản phẩm còn bổ sung một số câu hỏi trọng tâm thường xuất hiện trong kỳ thi tuyển sinh vào môn Toán. Đặc biệt, các bài toán hình học khó đã được trình bày đầy đủ hình vẽ kèm theo, ký hiệu và sơ đồ chi tiết giúp học sinh dễ dàng hiểu và áp dụng vào việc giải quyết. Tuyển chọn đề thi Toán Nguyễn Hoàng Nam không chỉ giúp học sinh ôn tập hiệu quả mà còn thúc đẩy khả năng tư duy logic và sáng tạo trong việc giải quyết các bài toán phức tạp.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Bình Dương Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Bình Dương năm học 2017-2018 Đề thi tuyển sinh THPT môn Toán sở GD và ĐT Bình Dương năm học 2017-2018 Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán của sở GD và ĐT Bình Dương bao gồm 5 bài toán tự luận, có lời giải chi tiết. Trong đó có một số bài toán thú vị như sau: Bài toán 1: Hai đội công nhân đắp đê ngăn triều cường. Nếu hai đội làm cùng một lúc, họ có thể hoàn thành công việc trong 6 ngày. Nếu làm riêng, đội I hoàn thành công việc chậm hơn đội II là 9 ngày. Hỏi nếu làm riêng, mỗi đội sẽ đắp xong đê trong bao nhiêu ngày? Bài toán 2: Ta có giác AMB cân tại M, nội tiếp trong đường tròn (O; R). Kẻ MH vuông góc với AB (H thuộc AB), MH cắt đường tròn tại N. Biết MA = 10cm, AB = 12cm. Hãy tính MH và bán kính R của đường tròn. Trên tia đối tia BA, lấy điểm C. MC cắt đường tròn tại D, ND cắt AB tại E. Chứng minh tứ giác MDEH nội tiếp và chứng minh các hệ thức: NB^2 = NE.ND và AC.BE = BC.AE. Cuối cùng, chứng minh NB tiếp xúc với đường tròn ngoại tiếp tam giác BDE. Đề thi mang đến những bài toán thú vị, giúp học sinh rèn luyện kỹ năng giải quyết vấn đề và tư duy logic. Hãy cùng nhau khám phá và giải quyết những thách thức trong đề thi này!
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Vĩnh Phúc Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh THPT môn Toán năm học 2017 - 2018 sở GD và ĐT Vĩnh Phúc Đề thi tuyển sinh lớp 10 THPT năm học 2017 - 2018 môn Toán tại sở GD và ĐT Vĩnh Phúc bao gồm tổng cộng 8 câu hỏi, bao gồm 4 câu hỏi trắc nghiệm và 4 bài toán tự luận. Đề thi được thiết kế với đáp án và lời giải chi tiết, giúp học sinh dễ dàng kiểm tra và nắm vững kiến thức Toán cần thiết cho kỳ thi tuyển sinh.
Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Nam Định
Nội dung Đề thi tuyển sinh THPT năm học 2017 2018 môn Toán sở GD và ĐT Nam Định Bản PDF - Nội dung bài viết Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định Đề thi tuyển sinh THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định Đề thi tuyển sinh lớp 10 THPT năm học 2017-2018 môn Toán sở GD và ĐT Nam Định bao gồm 8 câu hỏi trắc nghiệm và 5 bài toán tự luận, với đáp án và lời giải chi tiết. Một số bài toán trong đề: 1. Cho tam giác ABC vuông tại A, đường cao AH. Đường tròn tâm E đường kính BH cắt AB tại M (M khác B), đường tròn tâm F đường kính HC cắt AC tại N (N khác C). Hãy chứng minh AM.AB = AN.AC và AN.AC = MN^2. 2. Gọi I là trung điểm của EF, O là giao điểm của AH và MN. Hãy chứng minh rằng IO vuông góc với đường thẳng MN. 3. Chứng minh rằng 4(EN^2 + FM^2) = BC^2 + 6AH^2. 4. Cho tam giác ABC vuông tại A, đường cao AH biết BH = 4cm và CH = 16cm. Độ dài đường cao AH bằng bao nhiêu? 5. Cho hình nón có bán kính bằng 3cm, chiều cao bằng 4cm. Diện tích xung quanh của hình nón đã cho bằng bao nhiêu?