Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề giao lưu HSG Toán 12 năm 2019 - 2020 cụm các trường THPT tỉnh Bắc Ninh

Nằm trong kế hoạch ôn tập, bồi dưỡng đội tuyển học sinh giỏi môn Toán 12 để chuẩn bị cho kỳ thi HSG Toán 12 năm học 2019 – 2020, vừa qua, một số trường THPT thuộc sở Giáo dục và Đào tạo tỉnh Bắc Ninh đã tổ chức kỳ thi giao lưu học sinh giỏi cấp tỉnh môn Toán lớp 12 năm học 2019 – 2020. Đề giao lưu HSG Toán 12 năm học 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh mã đề 132, đề được biên soạn theo dạng trắc nghiệm với 50 câu, thời gian làm bài 90 phút; đề thi này cũng rất hữu ích dành các em học sinh khối 12 trong quá trình ôn tập chuẩn bị cho kỳ thi THPT Quốc gia môn Toán. Trích dẫn đề giao lưu HSG Toán 12 năm 2019 – 2020 cụm các trường THPT tỉnh Bắc Ninh : + Một đội xây dựng cần hoàn thiện một hệ thống cột trụ tròn của một cửa hàng kinh doanh gồm 10 chiếc. Trước khi hoàn thiện mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh 20 cm, sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng 42 cm. Chiều cao của mỗi cột trước và sau khi hoàn thiện là 4 m. Biết lượng xi măng cần dùng chiếm 80% lượng vữa và cứ một bao xi măng 50 kg thì tương đương với 3 64000cm xi măng. Hỏi cần ít nhất bao nhiêu bao xi măng loại 50 kg để hoàn thiện toàn bộ hệ thống cột đã cho? [ads] + Bạn An có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 1/3 và bạn Bình có một đồng xu mà khi tung có xác suất xuất hiện mặt ngửa là 2/5. Hai bạn An và Bình lần lượt chơi trò chơi tung đồng xu của mình đến khi có người được mặt ngửa, ai được mặt ngửa trước thì thắng. Các lần tung là độc lập với nhau và bạn An chơi trước. Xác suất bạn An thắng là p/q, trong đó p và q là các số nguyên dương nguyên tố cùng nhau. Tìm q − 2p. + Cho hàm số y = x^4 – 2020x^2 – m^2 – 1 với m là tham số thực. Kết luận nào sau đây là sai? A. Đồ thị hàm số cắt trục hoành tại 2 điểm phân biệt. B. Hàm số có 3 cực trị. C. Đồ thị hàm số nhận trục tung làm trục đối xứng. D. Đồ thị hàm số không có tiệm cận.

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Quảng Ngãi
Nội dung Đề thi chọn học sinh giỏi cấp tỉnh lớp 12 môn Toán năm 2018 2019 sở GD và ĐT Quảng Ngãi Bản PDF Đề thi chọn học sinh giỏi cấp tỉnh Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Quảng Ngãi được biên soạn theo hình thức tự luận với 6 bài toán, học sinh làm bài trong thời gian 180 phút, đề nhằm tuyển chọn những em học sinh khối 12 xuất sắc môn Toán để tiếp tục bồi dưỡng, rèn luyện và tạo điều kiện để các em được thử sức ở các cuộc thi cấp cao hơn như kỳ thi học sinh giỏi Toán cấp Quốc gia … đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi chọn học sinh giỏi cấp tỉnh Toán lớp 12 năm 2018 – 2019 sở GD và ĐT Quảng Ngãi : + Có hai chiếc hộp chứa bi, mỗi viên bi chỉ mang màu xanh hoặc màu đỏ. Lấy ngẫu nhiên từ mỗi hộp đúng 1 viên bi. Biết tổng số bi trong hai hộp là 20 và xác suất để lấy được 2 viên bi màu xanh là 55/84. Tính xác suất để lấy được 2 viên bi màu đỏ. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD và điểm E thuộc cạnh BC. Đường thẳng qua A và vuông góc với AE cắt CD tại F. Gọi M là trung điểm EF, đường thẳng AM cắt CD tại K. Tìm tọa độ điểm D biết A (-6;6), M (-4;2), K(-3;0) và E có tung độ dương. + Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Biết AB = 7a, BC = 7√3a, E là điểm trên cạnh SC và EC = 2ES. Tính thể tích khối chóp E.ABC. Tính khoảng cách giữa hai đường thẳng AC và BE.
Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán THPT năm 2018 2019 sở GD và ĐT Hải Dương
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 12 môn Toán THPT năm 2018 2019 sở GD và ĐT Hải Dương Bản PDF Đề thi chọn học sinh giỏi tỉnh Toán lớp 12 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương được biên soạn nhằm tuyển chọn các em học sinh lớp 12 có năng lực môn Toán đang học tập tại tỉnh Hải Dương để bồi dưỡng, tạo điều kiện cho các em thử sức ở kỳ thi HSG môn Toán cấp Quốc gia. Kỳ thi được diễn ra vào ngày 04/10/2018, đề thi gồm 1 trang với 5 bài toán tự luận, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi chọn học sinh giỏi tỉnh Toán lớp 12 THPT năm 2018 – 2019 sở GD và ĐT Hải Dương : + Một mảnh đất hình chữ nhật ABCD có chiều dài AB = 25m, chiều rộng AD = 20m được chia thành hai phần bằng nhau bởi vạch chắn MN (M, N lần lượt là trung điểm BC và AD). Một đội xây dựng làm một con đường đi từ A đến C qua vạch chắn MN, biết khi làm đường trên miền ABMN mỗi giờ làm được 15m và khi làm trong miền CDNM mỗi giờ làm được 30m. Tính thời gian ngắn nhất mà đội xây dựng làm được con đường đi từ A đến C. [ads] + Cho hình hộp đứng ABCD.A’B’C’D’ có đáy ABCD là hình vuông. Gọi S là tâm của hình vuông A’B’C’D’. SA, BC có trung điểm lần lượt là M và N. Tính thể tích của khối chóp S.ABC theo a, biết MN tạo với mặt phẳng (ABCD) một góc bằng 60 độ và AB = a. + Trong cuộc thi: “Thiết kế và trình diễn các trang phục dân tộc” do Đoàn trường THPT tổ chức vào tháng 3 năm 2018 với thể lệ mỗi lớp tham gia một tiết mục. Kết quả có 12 tiết mục đạt giải trong đó có 4 tiết mục khối 12, có 5 tiết mục khối 11và 3 tiết mục khối 10. Ban tổ chức chọn ngẫu nhiên 5 tiết mục biểu diễn chào mừng 26 tháng 3. Tính xác suất sao cho khối nào cũng có tiết mục được biểu diễn và trong đó có ít nhất hai tiết mục của khối 12. File WORD (dành cho quý thầy, cô):
Đề thi chọn HSG Toán cấp tỉnh vòng 2 năm 2018 2019 sở GD và ĐT Long An
Nội dung Đề thi chọn HSG Toán cấp tỉnh vòng 2 năm 2018 2019 sở GD và ĐT Long An Bản PDF Đề thi chọn HSG Toán cấp tỉnh vòng 2 năm 2018 – 2019 sở GD và ĐT Long An gồm 2 bài thi được tổ chức trong vòng hai ngày 20 và 21 tháng 09 năm 2018, các đề được biên soạn theo hình thức tự luận, đề thứ nhất gồm 4 bài toán, đề thứ hai gồm 3 bài toán, mỗi đề thí sinh giải trong vòng 180 phút, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi chọn HSG Toán cấp tỉnh vòng 2 năm 2018 – 2019 sở GD và ĐT Long An : + Cho K là tập hợp các số tự nhiên có bốn chữ số. Chọn ngẫu nhiên một số từ K. Tính xác suất để số được chọn có tổng các chữ số là bội của 4. + Có bao nhiêu số tự nhiên có 2018 chữ số, trong mỗi số đó các chữ số đều lớn hơn 1 và không có hai chữ số khác nhau cùng nhỏ hơn 7 đứng liền nhau? + Cho hàm số y = x^4 + 2mx^2 + 3 (m là tham số thực) có đồ thị (Cm). Tìm tất cả các giá trị của m sao cho trên đồ thị (Cm) tồn tại duy nhất một điểm mà tiếp tuyến của (Cm) tại điểm đó vuông góc với đường thẳng x – 8y + 2018 = 0. File WORD (dành cho quý thầy, cô):
Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2018 2019 sở GD và ĐT Ninh Bình
Nội dung Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2018 2019 sở GD và ĐT Ninh Bình Bản PDF Đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2018 – 2019 sở GD và ĐT Ninh Bình gồm 1 trang với 4 bài toán tự luận, thí sinh làm bài trong 180 phút, không kể thời gian giao đề, kỳ thi được tổ chức ngày 11/09/2018 nhằm tuyển chọn các em HSG Toán tham dự kỳ thi HSG Toán cấp Quốc gia năm 2019, đề thi có lời giải chi tiết và thang điểm. Trích dẫn đề thi chọn học sinh giỏi Toán THPT cấp tỉnh năm 2018 – 2019 sở GD và ĐT Ninh Bình : + Bạn Thanh viết lên bảng các số 1, 2, 3, …, 2019. Mỗi một bước Thanh xóa hai số a và b bất kỳ trên bảng và viết thêm số ab/(a + b + 1). Chứng minh rằng dù xóa như thế nào thì sau khi thực hiện 2018 bước trên bảng luôn còn lại số 1/2019. + Cho tam giác ABC nội tiếp đường tròn tâm O. Dựng ra phía ngoài tam giác ABC các hình bình hành ABMN và ACPQ sao cho tam giác ABN đồng dạng với tam giác CAP. Gọi G là giao điểm của AQ và BM, H là giao điểm của AN và CP. Đường tròn ngoại tiếp các tam giác GMQ, HNP cắt nhau tại E và F (E nằm trong đường tròn (O)). Chứng minh rằng ba điểm A, E, F thẳng hàng. Chứng minh rằng bốn điểm B, C, O, E cùng thuộc một đường tròn.