Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi học sinh giỏi tỉnh Toán 10 năm 2022 - 2023 sở GDĐT Hà Tĩnh

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hà Tĩnh; kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn Đề thi học sinh giỏi tỉnh Toán 10 năm 2022 – 2023 sở GD&ĐT Hà Tĩnh : + Ông A đang ăn chế độ ăn kiêng đặc biệt bằng cách sử dụng hai loại thực phẩm khác nhau là X và Y. Mỗi gói thực phẩm X chứa 20 đơn vị can xi, 20 đơn vị sắt và 10 đơn vị vitamin B. Mỗi gói thực phẩm Y chứa 20 đơn vị can xi, 10 đơn vị sắt và 20 đơn vị vitamin B. Yêu cầu hàng ngày với chế độ ăn kiêng là tối thiểu 240 đơn vị can xi, 160 đơn vị sắt và 140 đơn vị vitamin B. Mỗi ngày không được dùng quá 12 gói mỗi loại. Giá một gói loại X là 20.000đ, một gói loại Y là 25.000đ. Hỏi một ngày ông A cần dùng mỗi loại thực phẩm bao nhiêu để chi phí mua là ít nhất. + Trong kỳ thi học sinh giỏi cấp trường, một trường THPT đã dùng 7 cuốn sách tham khảo môn Toán, 6 cuốn sách tham khảo môn Vật lý, 5 cuốn sách tham khao môn Hóa học để làm phần thưởng cho 9 học sinh có kết quả cao nhất, các cuốn sách cùng môn là giống nhau và mỗi em sẽ nhận hai cuốn sách khác loại. Trong 9 em thì có hai em An và Bình. Hỏi có bao nhiêu khả năng để An và Bình có phần thưởng giống nhau? + Một chủ hộ kinh doanh có 32 phòng trọ cho thuê. Biết giá cho thuê mỗi tháng là 2.000.000đ/1 phòng trọ, thì không có phòng trống. Nếu cứ tăng giá mỗi phòng trọ lên 200.000đ/1 tháng, thì sẽ có 2 phòng bị bỏ trống. Hỏi chủ hộ kinh doanh sẽ cho thuê với giá là bao nhiêu để có thu nhập mỗi tháng cao nhất?

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG lớp 10 môn Toán năm học 2017 2018 trường THPT Quỳ Hợp 1 Nghệ An
Nội dung Đề thi chọn HSG lớp 10 môn Toán năm học 2017 2018 trường THPT Quỳ Hợp 1 Nghệ An Bản PDF - Nội dung bài viết Đề thi chọn HSG Toán lớp 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 Đề thi chọn HSG Toán lớp 10 năm học 2017 - 2018 trường THPT Quỳ Hợp 1 Đề thi chọn Học sinh giỏi môn Toán lớp 10 năm học 2017 - 2018 của trường THPT Quỳ Hợp 1 - Nghệ An bao gồm 1 trang với 5 bài toán tự luận. Thời gian làm bài là 150 phút, và thí sinh không được sử dụng máy tính cầm tay khi làm bài. Kỳ thi diễn ra vào ngày 30/01/2018, và đề thi cung cấp lời giải chi tiết cho các bài toán. Trích dẫn một số bài toán từ đề thi: Bài toán 1: Cho parabol (P): y = ax^2 + bx - 1. a. Tìm các giá trị của a và b để parabol có đỉnh S(-3/2; -11/2). b. Với giá trị của a và b ở câu 1, tìm giá trị của k để đường thẳng Δ: y = x(k + 6) + 1 cắt parabol tại hai điểm phân biệt M và N sao cho trung điểm của đoạn thẳng MN nằm trên đường thẳng d: 4x + 2y - 3 = 0. Bài toán 2: Cho hình vuông ABCD cạnh có độ dài là a. Gọi E và F là các điểm xác định bởi BE = 1/3.BC, CF = -1/2.CD, đường thẳng BF cắt đường thẳng AE tại điểm I. Bài toán 3: Cho tam giác đều ABC và các điểm M, N, P thỏa mãn BM = k.BC, CN = 2/3.CA, AP = 4/15.AB. Tìm giá trị của k để AM vuông góc với PN. File WORD (dành cho giáo viên) chứa đầy đủ nội dung của đề thi.
Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm học 2016 2017 sở GD và ĐT Hà Tĩnh
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm học 2016 2017 sở GD và ĐT Hà Tĩnh Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi toán lớp 10 Hà Tĩnh năm học 2016-2017 Đề thi chọn học sinh giỏi toán lớp 10 Hà Tĩnh năm học 2016-2017 Trên mặt phẳng với hệ tọa độ Oxy, có hình vuông ABCD. Gọi M là trung điểm của đoạn thẳng BC và N là điểm thuộc đoạn thẳng AC sao cho AC = 4AN. Đường thẳng DM có phương trình y - 1 = 0 và N(1/2;-3/2). Tính tọa độ điểm A. Cho tập hợp X có 2^n phần tử được chia thành các tập con không giao nhau. Xét quy tắc chuyển phần tử giữa các tập như sau: nếu A, B là các tập con của X và số phần tử của A không nhỏ hơn số phần tử của B thì ta được phép chuyển từ tập A vào tập B số phần tử bằng số phần tử của tập B. Chứng minh rằng sau một số hữu hạn các bước chuyển theo quy tắc trên, ta nhận được tập X. Đề thi chứa 5 bài toán tự luận với hướng dẫn giải chi tiết và thang điểm. Học sinh sẽ đối mặt với những thách thức toán học đa dạng và phải thể hiện sự tư duy, logic và khả năng giải quyết vấn đề của mình.
Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm học 2016 2017 sở GD và ĐT Hải Dương
Nội dung Đề thi chọn học sinh giỏi tỉnh lớp 10 môn Toán năm học 2016 2017 sở GD và ĐT Hải Dương Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi tỉnh môn Toán lớp 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương Đề thi chọn học sinh giỏi tỉnh môn Toán lớp 10 năm học 2016 – 2017 sở GD và ĐT Hải Dương Đề thi chọn học sinh giỏi tỉnh môn Toán lớp 10 năm học 2016 – 2017 của sở GD và ĐT Hải Dương gồm 5 bài toán tự luận, mỗi bài toán đều có hướng dẫn giải cụ thể và đề thi có thang điểm rõ ràng. Trong đề thi, một trong số bài toán được đưa ra như sau: + Một nông trại có diện tích 5 ha dự định trồng cà rốt và khoai tây. Để chăm sóc các loại cây này, nông trại phải sử dụng phân vi sinh. Việc trồng 1 ha cà rốt cần 3 tấn phân vi sinh và mang lại 50 triệu đồng tiền lãi, trồng 1 ha khoai tây cần 5 tấn phân vi sinh và thu được 75 triệu đồng tiền lãi. Hỏi nông trại cần trồng mỗi loại cây trên diện tích bao nhiêu để thu được tổng số tiền lãi cao nhất, biết rằng tổng số phân vi sinh không vượt quá 18 tấn. Đây là một trong những bài toán phức tạp nhưng rất thú vị trong đề thi môn Toán lớp 10 tại Hải Dương, đòi hỏi học sinh có khả năng tư duy logic, tính toán chính xác và kỹ năng giải quyết vấn đề. Bằng cách tiếp cận vấn đề một cách cẩn thận và phân tích kỹ lưỡng, học sinh sẽ có cơ hội thể hiện tốt khả năng toán học của mình và giành được điểm cao trong bài thi này.
Đề thi chọn học sinh giỏi lớp 10 môn Toán năm học 2016 2017 trường THPT Lục Ngạn Bắc Giang
Nội dung Đề thi chọn học sinh giỏi lớp 10 môn Toán năm học 2016 2017 trường THPT Lục Ngạn Bắc Giang Bản PDF - Nội dung bài viết Đề thi chọn học sinh giỏi lớp 10 môn Toán Đề thi chọn học sinh giỏi lớp 10 môn Toán Đề thi chọn học sinh giỏi lớp 10 môn Toán năm học 2016-2017 của trường THPT Lục Ngạn Bắc Giang bao gồm 9 câu hỏi tự luận. Đây là một bài kiểm tra đánh giá kỹ năng và kiến thức của học sinh trong môn Toán, từ đó tạo điều kiện cho việc tìm ra những học sinh có tài năng và năng khiếu đặc biệt trong lĩnh vực này. Câu hỏi được thiết kế để thử thách kiến thức và khả năng suy luận của thí sinh. Đề thi không chỉ đánh giá khả năng giải toán mà còn đánh giá khả năng vận dụng kiến thức vào thực tế. Qua đó, giúp học sinh phát triển kỹ năng tư duy logic, phân tích và giải quyết vấn đề hiệu quả.