Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn ĐT HSG tỉnh lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa

Nội dung Đề chọn ĐT HSG tỉnh lớp 8 môn Toán năm 2022 2023 phòng GD ĐT Triệu Sơn Thanh Hóa Bản PDF - Nội dung bài viết Đề Thi Đội Tuyển Học Sinh Giỏi Toán Lớp 8 - Triệu Sơn, Thanh Hóa Đề Thi Đội Tuyển Học Sinh Giỏi Toán Lớp 8 - Triệu Sơn, Thanh Hóa Xin chào quý thầy cô và các em học sinh lớp 8! Hôm nay, Sytu xin giới thiệu đến mọi người đề chọn đội dự tuyển học sinh giỏi cấp tỉnh môn Toán cho năm học 2022-2023 tại phòng Giáo dục và Đào tạo huyện Triệu Sơn, tỉnh Thanh Hóa. Kỳ thi sẽ diễn ra vào ngày 17 tháng 03 năm 2023, với đề thi bao gồm đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Dưới đây là một số câu hỏi mẫu từ đề thi: Bài 1: Cho a, b là các số tự nhiên lớn hơn 2 và p là số tự nhiên thỏa mãn \(2^{p-1} = a^b\). Chứng minh rằng p là hợp số. Bài 2: Cho đoạn thẳng AB = 2a. Gọi O là trung điểm của AB. Dựng các tia Ax, By về cùng một phía của AB sao cho Ax, By lần lượt vuông góc với AB. Chứng minh rằng CD = AC = BD. Bài 3: Cho hình thang ABCD có đáy lớn là CD. Gọi O là giao điểm của AC và BD. Một đường thẳng cắt các đoạn AD, OD, OC, BC lần lượt tại M, N, P, Q sao cho MN = NP = PQ. Chứng minh rằng CD = 2AB. Hy vọng mọi người sẽ tham gia và thể hiện tài năng của mình tại kỳ thi sắp tới! Chúc các em học sinh đạt kết quả cao và tiếp tục phát triển trong hành trình học tập của mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Ninh Phước - Ninh Thuận
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi học sinh giỏi huyện Toán 8 năm học 2018 – 2019 phòng GD&ĐT huyện Ninh Phước, tỉnh Ninh Thuận; đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Ninh Phước – Ninh Thuận : + Cho biểu thức A = (x – 1)(x + 2)(x + 3)(x + 6). Tìm giá trị của x để biểu thức A đạt giá trị nhỏ nhất. + Cho hình bình hành ABCD có DC = 2AD, từ trung điểm I của cạnh CD vẽ HI vuông góc với AB (H thuộc AB). Gọi E là giao điểm của AI và DH. Chứng minh rằng. + Cho tam giác ABC vuông tại A có AD là phân giác,biết BD = 14 3 17 cm, CD = 3 9 17 cm. Tính độ dài các cạnh góc vuông của tam giác.
Đề thi HSG Toán 8 năm 2018 - 2019 phòng GDĐT thị xã Giá Rai - Bạc Liêu
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT thị xã Giá Rai – Bạc Liêu; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.
Tuyển tập 100 đề thi học sinh giỏi môn Toán 8 - Hồ Khắc Vũ
Tài liệu gồm 89 trang tuyển tập 100 đề thi chọn học sinh giỏi môn Toán lớp 8 từ các trường THCS, cơ sở GD và ĐT trên toàn quốc. Tài liệu do thầy Hồ Khắc Vũ tổng hợp và biên soạn.
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy - Hưng Yên
Đề thi học sinh giỏi môn Toán 8 trường THCS Bãi Sậy – Hưng Yên gồm 1 trang với 6 bài toán tự luận, thời gian làm bài 60 phút. Trích dẫn đề thi : + Cho tam giác ABC vuông tại A. Trên cạnh BC lấy điểm D, kẻ DN vuông góc với AC và DM vuông góc AB. Kẻ đường cao AH của tam giác ABC. a. Tứ giác AMDN là hình gì? Vì sao? b. Tìm vị trí điểm D trên cạnh BC thì MN có độ dài nhỏ nhất? Vẽ hình đúng với vị trí của điểm D đó? c. Tính số đo góc MHN? [ads] + Chứng minh rằng biểu thức (x – 1 )(2x^2 + x + 1) – ( x – 2)(2x^2 + 3x + 6) có giá trị không phụ thuộc vào các biến? + Tìm các giá trị x; y nguyên dương sao cho 9xy + 3x + 3y = 51 + Tìm giá trị nhỏ nhất của đa thức N = x^2 + 5y^2 – 4xy + 6x – 14y + 15