Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề KSCL lớp 10 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa

Nội dung Đề KSCL lớp 10 môn Toán thi TN THPT 2024 lần 1 trường THPT Ba Đình Thanh Hóa Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề khảo sát chất lượng môn Toán lớp 10 ôn thi tốt nghiệp Trung học Phổ thông năm học 2023 – 2024 lần 1 trường THPT Ba Đình, tỉnh Thanh Hóa; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề KSCL Toán lớp 10 thi TN THPT 2024 lần 1 trường THPT Ba Đình – Thanh Hóa : + Lớp 10A có 10 học sinh giỏi Toán, 10 học sinh giỏi Văn, 11 học sinh giỏi Anh, trong đó có 6 học sinh giỏi cả Toán và Văn, 5 học sinh giỏi cả Anh và Văn, 4 học sinh giỏi cả Toán và Anh, 3 học sinh giỏi cả ba môn Toán, Văn và Anh. Tính số học sinh giỏi đúng một trong hai môn Toán hoặc Văn. + Người ta dự định dùng hai loại nguyên liệu để sản xuất ít nhất 140kg chất A và 18kg chất B. Với mỗi tấn nguyên liệu loại I, người ta chiết xuất được 20 kg chất A và 1,2 kg chất B. Với mỗi tấn nguyên liệu loại II, người ta chiết xuất được10kg chất A và 3 kg chất B. Giá mỗi tấn nguyên liệu loại I là 9 triệu đồng và loại II là 7 triệu đồng. Tính chi phí ít nhất dùng để mua nguyên liệu mà vẫn đạt mục tiêu đề ra. Biết rằng cơ sở cung cấp nguyên liệu chỉ có thể cung cấp tối đa 9 tấn nguyên liệu loại I và 8 tấn nguyên liệu loại II. + Để đo chiều cao của một cây lớn, một bạn từ vị trí H trên ban công của một toà nhà, có độ cao so với mặt đất 12m, bạn đó dùng dụng cụ đo góc quan sát được cây AB dưới góc AHB = 50. Biết khoảng cách từ chân tường nhà đến gốc cây là KA m 50, tính chiều cao của cây (làm tròn đến hàng đơn vị). File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh - Đồng Nai
Đề ôn tập trắc nghiệm môn Toán lớp 10 trường THPT chuyên Lương Thế Vinh – Đồng Nai gồm 4 mã đề, mỗi đề gồm 50 câu hỏi trắc nghiệm. Nội dung đề gồm 2 chương: + Mệnh đề và tập hợp + Hàm số bậc nhất và hàm số bậc hai Trong đề có một số câu hỏi bằng Tiếng Anh được trích dẫn từ các đề thi quốc tế, đề ôn tập có đáp án . Trích dẫn đề thi : + Xét hai hàm số: f(x) = x^2 + 2bx + 1 và g(x) = 2a(x + b), ở đây x là biến số và các hằng số a và b là các số thực. Với mỗi cặp hằng số a và b có thể được xem như là một điểm (a,b) trong mặt phẳng toạ độ Oab. Gọi S là tập hợp các điểm (a,b) sao cho đồ thị của các hàm số y = f(x) và y = g(x) không có điểm chung (trong mặt phẳng toạ độ Oxy). Diện tích của S bằng (hoặc gần bằng): [ads] A. 1 B. 4 C. 4π D. π + Cho parabol y = ax^2 + bx + c có đỉnh tại (4,−5) và cắt trục hoành tại hai điểm có hoành độ trái dấu. Trong các số a, b, c, số nào dương? A Chỉ b B Chỉ a C Chỉ c D Chỉ a và b + Biết rằng đồ thị hàm số y = ax^2 + bx + c cắt trục hoành tại hai điểm phân biệt A(x1;0), B(x2;0) (x1, x2 > 0) sao cho OA = AB. Hệ thức liên hệ giữa a, b, c là? A. 2b^2 = 9ac B. b^2 = 9ac C. b = 9ac D. b^2 = 9(a+ c)
Đề kiểm tra chất lượng lần 1 môn Toán 10 trường THPT Quảng Xương 4 - Thanh Hóa
Đề kiểm tra chất lượng lần 1 môn Toán 10 trường THPT Quảng Xương 4 – Thanh Hóa gồm 50 câu hỏi trắc nghiệm, có đáp án. Trích dẫn đề thi : + Người ta làm một chiếc cổng hình parabol dạng y = -1/2x^2 có chiều rộng d=8m. Khi đó chiều cao h của cổng là? A. h = 8m B. h = 10m C. h = 7m D. h = 9m + Cho hàm số y = x^2 – 2x + 3. Tìm mệnh đề đúng trong các mệnh đề sau: A. Hàm số đồng biến trên khoảng (2; +∞) B. Hàm số nghịch biến trên khoảng(-∞; 2) C. Đồ thị của hàm số có đỉnh I(1; 0) D. Hàm số đồng biến trên khoảng (0; +∞) [ads] + Trong một khoảng thời gian nhất định, tại một địa phương đài khí tượng thủy văn đã thống kê được: + Số ngày mưa: 10 ngày + Số ngày có gió: 8 ngày + Số ngày lạnh: 6 ngày + Số ngày mưa và gió: 5 ngày + Số ngày mưa và lạnh: 4 ngày + Số ngày lạnh và có gió: 3 ngày + Số ngày mưa lạnh và có gió: 1 ngày Vậy có bao nhiêu ngày có thời tiết xấu (có gió, mưa hoặc lạnh)?
Đề khảo sát chất lượng Toán 10 năm học 2017 - 2018 trường THPT Hậu Lộc 4 - Thanh Hóa lần 1
Đề khảo sát chất lượng lần 1 năm học 2017 – 2018 môn Toán khối 10 trường THPT Hậu Lộc 4, tỉnh Thanh Hóa gồm 4 câu hỏi tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi : + Cho hình vuông ABCD trên cạnh BC lấy điểm E. Dựng tia Ax vuông góc với AE, Ax cắt cạnh CD kéo dài tại F, kẻ trung tuyến AI của AEF, AI kéo dài cắt CD tại K. Qua E vẽ đường thẳng song song với AB cắt AI tại G. a. Chứng minh rằng tứ giác AECF nội tiếp b. Chứng minh rằng vtAB + vtEK + vtFA = vtEB + vtFK [ads] c. Chứng minh rằng vtFG = vtKE + Chứng minh rằng với mọi số thực dương a, b, c thì trong ba phương trình sau, ít nhất một phương trình có nghiệm: x^2 – 2√a.x + √bc = 0 x^2 – 2√b.x + √ac = 0 x^2 – 2√c.x + √ab = 0
Đề thi khảo sát chất lượng Toán 10 năm học 2016 - 2017 trường THPT Thạch Thành 1 - Thanh Hóa lần 4
Đề thi khảo sát chất lượng Toán 10 năm học 2016 – 2017 trường THPT Thạch Thành 1 – Thanh Hóa lần 4 gồm 7 bài tập tự luận, có hướng dẫn giải và thang điểm. Trích một số bài toán trong đề: + Cho hàm số: y = x^2 – 4x + c a) Tìm c biết rằng đồ thị của hàm số là một Parabol đi qua điểm A(2;-1) b) Vẽ đồ thị của hàm số ứng với giá trị c tìm được + Cho tam giác đều ABC cạnh a (a > 0). MNPQ là hình chữ nhật nội tiếp tam giác ABC (như hình vẽ). Tính diện tích lớn nhất có thể đạt được của hình chữ nhật MNPQ theo a. + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC có phương trình đường thẳng chứa đường cao kẻ từ B là: x + 3y – 18 = 0, phương trình đường trung trực của đoạn BC là: 3x + 19y – 279 = 0, đỉnh C thuộc đường thẳng d: 2x – y + 5 = 0. Tìm tọa độ điểm A biết rằng góc BAC = 135 độ.