Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán 12 lần 2 năm 2019 - 2020 trường Lý Thánh Tông - Hà Nội

giới thiệu đến quý thầy, cô giáo và các em học sinh khối 12 đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Lý Thánh Tông – Hà Nội, đề có mã đề 001 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề khảo sát Toán 12 lần 2 năm 2019 – 2020 trường Lý Thánh Tông – Hà Nội : + Một chiếc lu chứa nước dạng hình cầu có đường kính bằng 16a. Miệng lu là một đường tròn nằm trong mặt phẳng cách tâm mặt cầu một khoảng bằng 3a. Người ta muốn làm một chiếc nắp đậy bằng đúng miệng chiếc lu nước đó. Tính diện tích của chiếc nắp đậy đó? + Ông A dự định sử dụng hết 6,7m2 kính để làm một bể cá bằng kính có dạng hình hộp chữ nhật không nắp, chiều dài gấp đôi chiều rộng (các mối ghép có kích thước không đáng kể). Bể cá có dung tích lớn nhất bằng bao nhiêu (kết quả làm tròn đến hàng phần trăm)? [ads] + Một người gửi tiết kiệm vào một ngân hàng với lãi suất 7,5% / năm. Biết rằng nếu không rút tiền ra khỏi ngân hàng thì cứ sau mỗi năm số tiền lai sẽ được nhập vào vốn để tính lãi cho năm tiếp theo. Hỏi sau ít nhất bao nhiêu năm người đó thu được cả số tiền gửi ban đầu và lãi gấp đôi số tiền gửi ban đầu, giả định trong khoảng thời gian này lãi suất không thay đổi và người đó không rút tiền ra? + Cho hàm số y = f(x), y = g(x) liên tục trên [a;b]. Gọi H là miền phẳng giới hạn bởi đồ thị hàm số y = f(x), y = g(x), trục hoành và hai đường thẳng x = a, x = b (a < b).Diện tích miền H được tính theo công thức nào? + Hàm số y = f(x) liên tục trên các khoảng xác định và có bảng biến thiên như hình vẽ dưới đây. Tìm m để đồ thị hàm số có tiệm cận đứng nằm bên trái trục hoành?

Nguồn: toanmath.com

Đọc Sách

Đề khảo sát chất lượng Toán 12 năm 2022 - 2023 cụm Yên Phong - Bắc Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng môn Toán 12 năm học 2022 – 2023 cụm Yên Phong, tỉnh Bắc Ninh; đề thi có đáp án trắc nghiệm. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2022 – 2023 cụm Yên Phong – Bắc Ninh : + Trong không gian Oxyz, cho hai điểm A B 4 2 4 264 và đường thẳng 5 1 x d y z t. Gọi M là điểm di động thuộc mặt phẳng Oxy sao cho AMB 90 và N là điểm di động luôn cách d một khoảng là 1 đơn vị và cách mặt phẳng Oxy một khoảng không quá 3 đơn vị. Tổng giá trị nhỏ nhất và giá trị lớn nhất của MN bằng? + Trên tập hợp các số phức, phương trình 2 z a za 2 2 30 (a là tham số thực) có 2 nghiệm 1 z 2 z. Gọi M N là điểm biểu diễn của 1 z 2 z trên mặt phẳng tọa độ. Biết rằng có 2 giá trị 1 2 a a của tham số a để tam giác OMN có một góc bằng 120. Tổng 1 2 a a bằng? + Biết a b (trong đó a b là phân số tối giản và b) là giá trị của tham số m để hàm số 2 2 32 2 23 1 3 3 y x mx m x có 2 điểm cực trị 1 x 2 x sao cho xx 12 1 2 2 1. Giá trị biểu thức Ta b 2 là?
Đề khảo sát chất lượng Toán 12 năm 2022 - 2023 sở GDĐT Hải Dương
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Hải Dương; đề thi có đáp án mã đề 101 – 102 – 103 – 104 – 105 – 106 – 107 – 108 – 109 – 110 – 111 – 112 – 113 – 114 – 115 – 116 – 117 – 118 – 119 – 120 – 121 – 122 – 123 – 124. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2022 – 2023 sở GD&ĐT Hải Dương : + Cho hình nón đỉnh S có đường tròn đáy tâm O và góc ở đỉnh bằng 120. Một mặt phẳng đi qua S cắt hình nón theo thiết diện là tam giác SAB. Biết khoảng cách giữa hai đường thẳng AB và SO bằng 3, diện tích xung quanh của hình nón đã cho bằng 18 3. Tính diện tích tam giác SAB. + Trong không gian với hệ tọa độ Oxyz, cho mặt cầu 2 2 4 4 0 S x y z x y và hai điểm A B 4 2 4 1 4 2. MN là dây cung của mặt cầu thỏa mãn MN cùng hướng với u = (0;1;1) và MN 4 2. Tính giá trị lớn nhất của AM BN. + Một bình đựng 5 viên bi xanh và 3 viên bi đỏ (các viên bi cùng màu là khác nhau). Lấy ngẫu nhiên một viên bi, rồi lấy ngẫu nhiên một viên bi nữa. Khi tính xác suất của biến cố “Lấy lần thứ hai được một viên bi xanh”, ta được kết quả?
Đề khảo sát chất lượng Toán 12 năm 2023 sở GDĐT Cần Thơ
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 năm học 2022 – 2023 sở Giáo dục và Đào tạo thành phố Cần Thơ; hướng đến kỳ thi tốt nghiệp THPT 2023 môn Toán. Trích dẫn Đề khảo sát chất lượng Toán 12 năm 2023 sở GD&ĐT Cần Thơ : + Trong không gian Oxyz, cho mặt cầu (S): (x − 1)2 + (y + 2)2 + (z − 3)2 = 27. Gọi (a) là mặt phẳng đi qua hai điểm A(0;0;−4), B(2;0;0) và cắt (S) theo giao tuyến là đường tròn (C) sao cho khối nón đỉnh là tâm của (S) và đáy là (C) có thể tích lớn nhất. Biết phương trình của (a) có dạng ax + by – z + c = 0 (a, b, c ∈ R). Giá trị của a − b + c bằng? + Trong không gian Oxyz, cho đường thẳng d, mặt phẳng (P): x + y – 2z + 5 = 0 và điểm A(1;−1;2). Đường thẳng delta đi qua điểm A, cắt d và (P) lần lượt tại M, N sao cho A là trung điểm của đoạn thẳng MN. Biết delta có một vectơ chỉ phương u = (a;b;4), giá trị của a + b bằng? + Cho khối nón đỉnh S có đáy là hình tròn tâm O. Gọi A và B là hai điểm thuộc đường tròn (O) sao cho tam giác SAB vuông và có diện tích bằng 4a2. Góc giữa đường thẳng SO và mặt phẳng (SAB) bằng 30°. Thể tích của khối nón đã cho bằng?
Đề khảo sát Toán 12 THPT lần 2 năm 2022 - 2023 sở GDĐT Hải Phòng
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề khảo sát chất lượng học sinh môn Toán 12 THPT lần 2 năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND thành phố Hải Phòng; đề thi có đáp án mã đề Mã 101 Mã 102 Mã 103 Mã 104 Mã 105 Mã 106 Mã 107 Mã 108. Trích dẫn Đề khảo sát Toán 12 THPT lần 2 năm 2022 – 2023 sở GD&ĐT Hải Phòng : + Cho x y là các số nguyên dương nhỏ hơn 2023. Gọi S là tập hợp các giá trị của y thỏa mãn: Với mỗi giá trị của y luôn có ít nhất 100 giá trị không nhỏ hơn 3 của x thỏa 2 2 log 4 2 y x y, đồng thời các tập hợp có y phần tử có số tập con lớn hơn 2048. Số phần tử của tập S là? + Một hình trụ có hai đáy là hai hình tròn tâm O O và có bán kính r = 15. Khoảng cách giữa hai đáy là OO = 6. Gọi là mặt phẳng qua trung điểm của đoạn OO và tạo với đường thẳng OO một góc 30. Diện tích của thiết diện tạo bởi mặt phẳng và hình trụ bằng? + Trong không gian với hệ trục tọa độ Oxyz, từ điểm A(1;1;0) kẻ các tiếp tuyến đến mặt cầu (S) có tâm I(−1;1;1) và bán kính R = 1. Gọi M a b c là một trong các tiếp điểm ứng với các tiếp tuyến trên. Giá trị lớn nhất của biểu thức T a c 2 1 bằng?