Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn học sinh năng khiếu lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Sơn Dương Tuyên Quang

Nội dung Đề chọn học sinh năng khiếu lớp 7 môn Toán năm 2020 2021 phòng GD ĐT Sơn Dương Tuyên Quang Bản PDF - Nội dung bài viết Đề chọn học sinh năng khiếu Toán lớp 7 năm 2020 - 2021 phòng GD&ĐT Sơn Dương - Tuyên Quang Đề chọn học sinh năng khiếu Toán lớp 7 năm 2020 - 2021 phòng GD&ĐT Sơn Dương - Tuyên Quang Đề chọn học sinh năng khiếu Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Sơn Dương - Tuyên Quang là một bài kiểm tra gồm 01 trang với 05 bài toán dạng tự luận. Thời gian làm bài cho học sinh là 150 phút. Đề thi này được thiết kế nhằm đánh giá khả năng tư duy logic, suy luận và sự hiểu biết sâu rộng về môn Toán của học sinh lớp 7. Bài thi được sắp xếp theo cấu trúc logic và thử thách, giúp học sinh phát huy khả năng giải quyết vấn đề, phân tích và suy luận một cách logic. Đề thi cũng có thể khám phá và khuyến khích sự sáng tạo của học sinh thông qua các bài toán đa dạng và phong phú. Thời gian làm bài 150 phút là đủ để học sinh đề xuất giải pháp cho từng bài toán một cách tỉ mỉ và chính xác. Đây là cơ hội để các em thể hiện kiến thức, kỹ năng và sự tự tin trong môn Toán. Đề thi chọn học sinh năng khiếu Toán lớp 7 năm 2020 - 2021 của phòng GD&ĐT Sơn Dương - Tuyên Quang là một cơ hội để các em thể hiện năng khiếu và đam mê với môn học này, đồng thời giúp phát triển tư duy logic và kỹ năng toán học của học sinh.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2015 - 2016 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Vũ Thư – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Vũ Thư – Thái Bình : + Cho tam giác ABC nhọn; vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE. a) Chứng minh DC = BE và DC BE. b) Gọi H là chân đường vuông góc kẻ từ A đến ED và M là trung điểm của đoạn thẳng BC. Chứng minh A, M, H thẳng hàng. + Cho tam giác ABC vuông tại A có AB= 3cm; AC= 4cm. Điểm I nằm trong tam giác và cách đều ba cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ điểm I đến BC. Tính MB. + Tìm hình chữ nhật có kích thước các cạnh là số nguyên sao cho số đo diện tích bằng số đo chu vi.
Đề khảo sát HSG Toán 7 năm 2015 - 2016 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 7 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định : + Cho tam giác ABC đều. Trên cạnh AB lấy điểm D sao cho BD AB. Tại D kẻ đường vuông góc với AB cắt cạnh BC tại E. Tại E kẻ đường vuông góc với BC cắt AC tại F. 1) Chứng minh DF AC. Biết trong tam giác vuông cạnh đối diện với góc 0 30 thì bằng nửa cạnh huyền. 2) Chứng minh tam giác DEF đều. 3) Gọi G là trọng tâm của tam giác DEF. Chứng minh GA = GB = GC. + Cho đa thức Q(x) = ax bx cx d với a, b, c, d. Biết Q(x) chia hết cho 3 với mọi. Chứng tỏ các hệ số a, b, c, d đều chia hết cho 3. + Số M được chia thành ba phần tỉ lệ nghịch với 3; 5; 6. Biết rằng tổng các lập phương của ba phần đó là 10728. Hãy tìm số M.
Đề khảo sát HSG huyện Toán 7 năm 2015 - 2016 phòng GDĐT Thái Thụy - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Thái Thụy – Thái Bình; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề khảo sát HSG huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Thái Thụy – Thái Bình : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của DK. + Cho f(x) = ax2 + bx + c, với a, b, c thuộc Z. Biết f(-1); f(0); f(1) đều chia hết cho 3. Chứng minh rằng a, b, c đều chia hết cho 3. + Cho đa thức B(x) = 1 + x + x2 + x3 + … + x99 + x100. Tính giá trị của đa thức B(x) tại x = 1/2.
Đề HSG Toán 7 cấp huyện năm 2015 - 2016 phòng GDĐT Sông Lô - Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề HSG Toán 7 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề HSG Toán 7 cấp huyện năm 2015 – 2016 phòng GD&ĐT Sông Lô – Vĩnh Phúc : + Cho tam giác ABC cân tại A, BH vuông góc AC tại H. Trên cạnh BC lấy điểm M bất kì (khác B và C). Gọi D, E, F là chân đường vuông góc hạ từ M đến AB, AC, BH. a) Chứng minh ∆DBM = ∆FMB. b) Chứng minh khi M chạy trên cạnh BC thì tổng MD + ME có giá trị không đổi. c) Trên tia đối của tia CA lấy điểm K sao cho CK = EH. Chứng minh BC đi qua trung điểm của DK. + Có sáu túi lần lượt chứa 18, 19, 21, 23, 25 và 34 bóng. Một túi chỉ chứa bóng đỏ trong khi năm túi kia chỉ chứa bóng xanh. Bạn Toán lấy ba túi, bạn Học lấy hai túi. Túi còn lại chứa bóng đỏ. Biết lúc này bạn Toán có số bóng xanh gấp đôi số bóng xanh của bạn Học. Tìm số bóng đỏ trong túi còn lại. + Cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3. Tính giá trị nhỏ nhất của tổng bốn số này?