Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường THPT Trần Phú - Hà Tĩnh

Chiều thứ Bảy ngày 11 tháng 01 năm 2020, trường THPT Trần Phú, tỉnh Hà Tĩnh tổ chức kỳ thi thử THPT Quốc gia môn Toán lần thứ nhất năm học 2019 – 2020. Đề thi thử Toán THPT Quốc gia 2020 lần 1 trường THPT Trần Phú – Hà Tĩnh mã đề 201 gồm có 04 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề thi thử Toán THPT Quốc gia 2020 lần 1 trường THPT Trần Phú – Hà Tĩnh : + Trong không gian cho hai điểm A, B cố định và độ dài đoạn thẳng AB bằng 4. Biết rằng tập hợp các điểm M sao cho MA = 3MB là một mặt cầu. Tìm bán kính R của mặt cầu đó? + Hãng pha lê nổi tiếng Swarovski của Áo dự định thiết kế một viên pha lê hình cầu và đặt vào bên trong nó 7 viên ruby hình cầu nhỏ hơn, trong đó viên ruby ở chính giữa có tâm trùng với tâm của viên pha lê và tiếp xúc với 6 viên ruby còn lại, 6 viên ruby còn lại có kích thước bằng nhau và nằm ở các vị trí đối xứng nhau (qua tâm của viên pha lê) và tiếp xúc với viên pha lê (như hình vẽ). Biết viên pha lê có đường kính 10 cm và hãng này muốn thiết kế sao cho tổng thể tích các viên ruby bên trong là nhỏ nhất để tiết kiệm được lượng ruby. Khi đó bán kính của viên ruby ở giữa mà hãng pha lê cần thiết kế gần giá trị nào nhất sau đây? [ads] + Một người gửi 150 triệu đồng vào ngân hàng với kì hạn 3 tháng (một quý), lãi suất 5% một quý theo hình thức lãi kép. Sau đúng 6 tháng người đó gửi thêm 150 triệu đồng với hình thức và lãi suất như trên. Hỏi sau đúng một năm tính từ lần gửi đầu tiên người đó nhận được số tiền gần với kết quả nào nhất? + Cho khối chóp S.ABCD có thể tích bằng 1 và đáy ABCD là hình bình hành. Trên cạnh SC lấy điểm E sao cho SE = 2EC. Tính thể tích V của khối tứ diện SEBD. + Gieo đồng thời hai con súc sắc cân đối và đồng chất. Tính xác suất P để hiệu số chấm trên các mặt xuất hiện của hai con súc sắc bằng 2.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2024 môn Toán liên trường THPT - Hà Tĩnh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 môn Toán liên trường THPT sở Giáo dục và Đào tạo tỉnh Hà Tĩnh: THPT Cù Huy Cận – THPT Vũ Quang – THPT Đức Thọ; kỳ thi được diễn ra vào ngày 20 tháng 01 năm 2024; đề thi có đáp án và lời giải chi tiết mã đề 101 – 102 – 103 – 104. Trích dẫn Đề thi thử tốt nghiệp THPT 2024 môn Toán liên trường THPT – Hà Tĩnh : + Trong không gian với hệ tọa độ Oxyz cho mặt cầu 22 Sx y z x y 2 2 30 và hai điểm A B 350 010. Điểm M abc di động trên (S). Khi biểu thức MA MB 2 đạt giá trị nhỏ nhất thì 2abc bằng? + Xét tất cả các số thực x y sao cho 2 3 4 log 68 9 x a y a với mọi số thực dương a. Khi biểu thức 2 2 P x yxy 22 4 đạt giá trị lớn nhất thì 2x y bằng? + Cho hình nón tròn xoay có chiều cao bằng 2a, bán kính đáy bằng 3a. Một thiết diện đi qua đỉnh của hình nón có khoảng cách từ tâm của đáy đến mặt phẳng chứa thiết diện bằng 3 2 a. Diện tích của thiết diện đó bằng?
Đề thi thử Toán tốt nghiệp THPT 2024 lần 1 trường chuyên Hạ Long - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 1 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh (mã đề 103); kỳ thi được diễn ra vào ngày … tháng 01 năm 2024. Trích dẫn Đề thi thử Toán tốt nghiệp THPT 2024 lần 1 trường chuyên Hạ Long – Quảng Ninh : + Giải bóng đá ngoại hạng Anh gồm 20 đội bóng tham gia, biết rằng mỗi đội bóng phải đá với mỗi đội bóng còn lại 2 trận (1 trận sân nhà và 1 trận sân khách). Hỏi kết thức mùa giải ban tổ chức phải tổ chức bao nhiêu trận đấu? + Cho hàm số y = x3 − 2(m + 1)x2 + (5m + 1)x − 2m − 2 có đồ thị là (C) với m là tham số. Tập S là tập hợp các giá trị nguyên của m và m thuộc (–2024;2024) để (Cm) cắt trục hoành tại ba điểm phân biệt A(2;0), B, C sao cho trong hai điểm B, C có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình x2 + y2 = 1. Tính số các phần tử của S. + Một khúc gỗ có dạng hình khối nón có bán kính đáy bằng r = 2m, chiều cao h = 6m. Bác thợ mộc chế tác từ khúc gỗ đó thành một khúc gỗ có dạng hình khối trụ như hình vẽ. Gọi V là thể tích lớn nhất của khúc gỗ hình trụ sau khi chế tác. Tính V.
Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Hòn Gai - Quảng Ninh
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử tốt nghiệp THPT năm học 2023 – 2024 lần 1 môn Toán trường THPT Hòn Gai, thành phố Hạ Long, tỉnh Quảng Ninh (mã đề 322). Trích dẫn Đề thi thử TN THPT 2024 lần 1 môn Toán trường THPT Hòn Gai – Quảng Ninh : + Cho một hình trụ tròn xoay và hình vuông ABCD cạnh a có hai đỉnh liên tiếp A, B nằm trên đường tròn đáy thứ nhất của hình trụ, hai đỉnh còn lại nằm trên đường tròn đáy thứ hai của hình trụ. Mặt phẳng (ABCD) tạo với đáy hình trụ góc 45°. Tính diện tích xung quanh hình trụ. + Người ta cần làm một cái bồn chứa dạng hình trụ có thể tích 1000 lít bằng inox để chứa nước, tính bán kính R của hình trụ đó sao cho diện tích toàn phần của bồn chứa đạt giá trị nhỏ nhất? + Trong mặt phẳng (P) cho hình chữ nhật ABCD có AB = a, AD = b. Trên các nửa đường thẳng Ax, Cy vuông góc với (P) và ở cùng một phía với mặt phẳng ấy, lần lượt lấy các điểm M, N sao cho (MBD) vuông góc với (NBD). Tìm giá trị nhỏ nhất Vmin của tứ diện MNBD.
Đề thi thử Toán TN THPT 2024 lần 2 trường THPT Lục Ngạn 1 - Bắc Giang
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi thử môn Toán tốt nghiệp THPT năm học 2023 – 2024 lần 2 trường THPT Lục Ngạn số 1, tỉnh Bắc Giang; kỳ thi được diễn ra vào ngày 15 – 16 – 17 tháng 12 năm 2023; đề thi có đáp án trắc nghiệm mã đề 001. Trích dẫn Đề thi thử Toán TN THPT 2024 lần 2 trường THPT Lục Ngạn 1 – Bắc Giang : + Một tấm tôn hình tam giác ABC có độ dài cạnh AB AC BC 3 2 19. Điểm H là chân đường cao kẻ từ đỉnh A của tam giác ABC. Người ta dùng compa có tâm là A, bán kính AH vạch một cung tròn nhỏ MN. Lấy phần hình quạt gò thành hình nón không có mặt đáy với đỉnh là A, cung MN thành đường tròn đáy của hình nón (như hình vẽ). Tính thể tích khối nón trên. + Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B. Biết SA vuông góc với ABCD AB BC a AD a SA a. Gọi E là trung điểm của AD. Bán kính mặt cầu đi qua các điểm S D C E bằng? + Có bao nhiêu số nguyên a thuộc (0;2023) sao cho ứng với mỗi a, tồn tại ít nhất mười số nguyên b 3 10 thỏa mãn 2 2 3 6560 3 b a a b?