Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề hình vuông

Nội dung Chuyên đề hình vuông Bản PDF - Nội dung bài viết Chuyên đề hình vuông Chuyên đề hình vuông Tài liệu này bao gồm 17 trang, tóm tắt những kiến thức quan trọng về hình vuông cần nắm vững, cung cấp các phân dạng và hướng dẫn cách giải các dạng toán liên quan. Ngoài ra, tài liệu còn tuyển chọn các bài tập từ cơ bản đến nâng cao về chuyên đề hình vuông, đi kèm đáp án và lời giải chi tiết. Tài liệu này hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8, chương 1: Tứ giác. Nó cung cấp kiến thức cần nhớ, các dạng bài tập minh họa và phiếu bài tập rèn luyện để học sinh tự rèn luyện và nắm vững kiến thức. Trong tài liệu này, người đọc sẽ được hướng dẫn cách nhận dạng hình vuông và cách giải các bài tập liên quan. Đồng thời, tài liệu cũng cung cấp phương pháp để chứng minh các quan hệ bằng nhau, song song, vuông góc, và thẳng hàng trong hình vuông. Ngoài ra, tài liệu còn giúp người đọc hiểu rõ về điều kiện để một hình trở thành hình vuông và cách giải các bài tập liên quan. Bằng cách sử dụng các dấu hiệu nhận biết hình vuông và áp dụng các tính chất của hình vuông, người đọc sẽ có thể dễ dàng tìm ra đáp án đúng cho các câu hỏi trong bài tập. Trên tất cả, tài liệu này đem đến sự hỗ trợ toàn diện cho học sinh, giúp họ nắm vững kiến thức và phát triển kỹ năng giải bài tập trong chuyên đề hình vuông một cách dễ dàng và hiệu quả.

Nguồn: sytu.vn

Đọc Sách

Chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích xung quanh và thể tích của hình lăng trụ đứng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều.
Chuyên đề hình lăng trụ đứng
Tài liệu gồm 09 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình lăng trụ đứng, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình lăng trụ đứng. 2. Thí dụ. B. Phương pháp giải toán C. Phiếu bài tự luyện
Chuyên đề hình hộp chữ nhật
Tài liệu gồm 12 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề hình hộp chữ nhật, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 4: Hình lăng trụ đứng, hình chóp đều. A. Bài giảng củng cố kiến thức nền 1. Hình hộp chữ nhật. 2. Mặt phẳng và đường thẳng. 3. Hai đường thẳng song song trong không gian. 4. Đường thẳng song song với mặt phẳng. Hai mặt phẳng song song. B. Phương pháp giải toán Dạng toán 1: Chứng minh các tính chất của hình hộp chữ nhật. Dạng toán 2: Tính toán các yếu tố của hình hộp chữ nhật.
Hướng dẫn ôn tập giữa kì 2 Toán 8 năm 2020 - 2021 trường Vinschool - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh lớp 8 đề cương hướng dẫn ôn tập giữa kì 2 Toán 8 năm học 2020 – 2021 trường Vinschool – Hà Nội, nhằm giúp các em rèn luyện, chuẩn bị cho kỳ kiểm tra khảo sát chất lượng môn Toán 8 giai đoạn giữa học kỳ 2 năm học 2020 – 2021. I. KIẾN THỨC TRỌNG TÂM Phương trình bậc nhất một ẩn: – Phương trình một ẩn, nghiệm của phương trình, giải phương trình, phương trình tương đương. – Phương trình bậc nhất một ẩn và cách giải. – Phương trình đưa được về dạng ax + b = 0. – Phương trình tích. – Phương trình chứa ẩn ở mẫu (dạng toán chuyển động, dạng toán có nội dung số học, dạng toán năng suất, dạng toán có nội dung hình học). Định lý Ta let – Tính chất đường phân giác của tam giác: – Định lý Talet thuận và đảo. – Hệ quả định lý Talet. – Tính chất đường phân giác của tam giác. Tam giác đồng dạng: – Khái niệm hai tam giác đồng dạng. – Các trường hợp đồng dạng của tam giác. II. BÀI TẬP TỰ LUẬN Dạng 1. Giải phương trình. Dạng 2. Giải toán bằng cách lập phương trình. Dạng 3. Hình học tổng hợp. Dạng 4. Nâng cao.