Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề tập hợp các số nguyên

Tài liệu gồm 12 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp các số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÝ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Điền kí hiệu thích hợp vào chỗ trống. – Dạng điền kí hiệu. – Tập hợp số tự nhiên. – Tập hợp số nguyên gồm các số nguyên âm, số 0 và số nguyên dương. – A B nếu mọi phần tử của A đều thuộc B. – Dạng điền Đ (đúng) hoặc chữ S (sai); đánh dấu “x” vào ô đúng hoặc sai. Dạng 2 . Biểu diễn số nguyên trên trục số. Trục số là hình biểu diễn gồm một đường thẳng nằm ngang hoặc thẳng đứng, một đầu gắn với mũi tên (biểu thị chiều dương) được chia thành các khoảng bằng nhau (được gọi là đơn vị) và ghi kèm các số tương ứng. Điểm 0 (biểu diễn số 0) được gọi là điểm gốc của trục số (thường đặt tên là O). Điểm biểu diễn số a trên trục số gọi là điểm a. Với trục số nằm ngang: Chiều từ trái sang phải là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Với trục số thẳng đứng: Chiều từ dưới lên trên là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Dạng 3 . So sánh hai hay nhiều số nguyên. Cách 1 : Biểu diễn các số nguyên cần so sánh trên trục số. Giá trị các số nguyên tăng dần từ trái sang phải (điểm a nằm bên trái điểm b thì số nguyên a bé hơn số nguyên b). Cách 2 : Căn cứ vào các nhận xét sau: Số nguyên dương lớn hơn 0. Số nguyên âm nhỏ hơn 0. Số nguyên dương lớn hơn số nguyên âm. Trong hai số nguyên dương, số nào có giá trị tuyệt đối lớn hơn thì số ấy lớn hơn. Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì số ấy lớn hơn. Kiến thức về giá trị tuyệt đối: – Giá trị tuyệt đối của một số tự nhiên là chính nó. – Giá trị tuyệt đối của một số nguyên âm là số đối của nó. – Giá trị tuyệt đối của một số nguyên là một số tự nhiên. – Hai số nguyên đối nhau có cùng một giá trị tuyệt đối. Dạng 4 . Viết tập hợp số. Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C …. Hai cách viết tập hợp số: Cách 1: Liệt kê các phần tử. Cách 2: Chỉ ra các tính chất đặc trưng. Chú ý: + Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số. + Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. Dạng 5 . Sử dụng số nguyên âm trong thực tế. Số dương và số âm được dùng để biểu thị các đại lượng đối lập nhau hoặc có hướng ngược nhau. Số âm thường dùng để chỉ: – Nhiệt độ dưới 0C. – Độ cao dưới mực nước biển. – Số tiền còn nợ. – Số tiền lỗ. – Độ cận thị. – Thời gian trước Công Nguyên.

Nguồn: toanmath.com

Đọc Sách

Tài liệu dạy thêm Toán 6 Chân Trời Sáng Tạo học kì 1
Tài liệu gồm 56 trang, phân dạng và tuyển chọn các bài tập Toán 6 Chân Trời Sáng Tạo học kì 1, hỗ trợ quý thầy, cô giáo trong quá trình dạy thêm Toán 6 CTST (tập 1). Chương 1 SỐ TỰ NHIÊN. Bài 1 Tập hợp. Phần tử của tập hợp. Bài 2 Tập hợp số tự nhiên. Ghi số tự nhiên. Bài 3 Các phép tính trong tập hợp số tự nhiên. Bài 4 Luỹ thừa với số mũ tự nhiên. Bài 5 Thứ tự thực hiện các phép tính. Bài 6 Chia hết và chia có dư. Tính chất chia hết của một tổng. Bài 7 Dấu hiệu chia hết cho 2, cho 5. Bài 8 Dấu hiệu chia hết cho 3, cho 9. Bài 9. Ước và bội. Bài 10 Số nguyên tố. Hợp số. Phân tích một số ra thừa số nguyên tố. Bài 12 Ước chung. Ước chung lớn nhất. Bài 13 Bội chung. Bội chung nhỏ nhất. Chương 2 SỐ NGUYÊN. Bài 1 Số nguyên âm và tập hợp các số nguyên. Bài 2 Thứ tự trong tập hợp số nguyên. Bài 3 Phép cộng và phép trừ hai số nguyên. Bài 4 Phép nhân và phép chia hết hai số nguyên. Chương 3 HÌNH HỌC TRỰC QUAN: CÁC HÌNH PHẲNG TRONG THỰC TIỄN. Bài 1 Hình vuông – Tam giác đều – Lục giác đều. Bài 2 Hình chữ nhật – Hình thoi- Hình bình hành – Hình thang cân. Bài 3 Chu vi và diện tích của một số hình trong thực tiễn. Chương 4 MỘT SỐ YẾU TỐ THỐNG KÊ. Bài 1 Thu thập và phân loại dữ liệu. Bài 2 Biểu diễn dữ liệu trên bảng. Bài 3 Biểu đồ tranh. Bài 4 Biểu đồ cột – Biểu đồ cột kép.
Chuyên đề thực hiện dãy tính và tính nhanh
Tài liệu gồm 104 trang, trình bày kiến thức trọng tâm cần đạt, hướng dẫn giải các dạng toán và tuyển chọn các bài tập chuyên đề thực hiện dãy tính và tính nhanh, có đáp án và lời giải chi tiết, hỗ trợ học sinh lớp 6 trong quá trình ôn tập thi học sinh giỏi môn Toán 6. A/ KIẾN THỨC CẦN NHỚ Với bài toán thực hiện phép tính trong các kì thi học sinh giỏi, đòi hỏi học sinh phải nhanh nhạy trong việc phối hợp nhiều phép tinh như: phép tính lũy thừa, phép tính cộng trừ các phân số, tối giản phân số, rồi tính tổng theo quy luật … thứ tự thực hiện phép tính. KIẾN THỨC BỔ TRỢ: 1/ Công thức tính lũy thừa của số tự nhiên. 2/ Một số công thức đặt thừa số chung. 3/ Một số công thức tính tổng. a) Tổng các số hạng cách đều: S = a1 + a2 + a3 + … + an. b) Tổng có dạng: S = 1 + a + a2 + a3 + … + an. c) Tổng có dạng: S = 1 + a2 + a4 + a6 + … + a2n. d) Tổng có dạng: S = a + a3 + a5 + a7 + … + a2n + 1. e) Tổng có dạng: S = 1.2 + 2.3 + 3.4 + 4.5 + … + (n – 1). n. f) Tổng có dạng: P = 12 + 22 + 32 + 42 + … + n2. g) Tổng có dạng: S = 12 + 32 + 52 + … + (k – 1)2 với k chẵn và k thuộc N. h) Tổng có dạng: S = a1.a2 + a2.a3 + a3.a4 + a4.a5 + … + an-1.an. i) Tổng có dạng: S = 1/a1.a2 + 1/a2.a3 + 1/a3.a4 + 1/a4.a5 + … + 1/an-1.an. B. BÀI TOÁN TỰ LUYỆN C. BÀI TOÁN QUA ĐỀ THI HSG
Tài liệu dạy thêm - học thêm chuyên đề số đo góc
Tài liệu gồm 14 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề số đo góc, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. DẠNG 1. NHẬN BIẾT GÓC. Để đọc tên và viết kí hiệu góc, ta làm như sau: Bước 1: Xác định đỉnh và hai cạnh của góc. Bước 2: Kí hiệu góc và đọc tên. Lưu ý: Một góc có thể gọi bằng nhiều cách. DẠNG 2. TÍNH SỐ GÓC TẠO THÀNH TỪ N TIA CHUNG GỐC CHO TRƯỚC. Để đếm góc tạo thành từ n tia chung gốc cho trước, ta thường làm theo các cách sau: Cách 1: Vẽ hình và đếm các góc tao bởi tất cả các tia cho trước. Cách 2: Sử dụng công thức. DẠNG 3. XÁC ĐỊNH CÁC ĐIỂM NẰM BÊN TRONG GÓC CHO TRƯỚC. Để xác định điểm M có nằm bên trong góc xOy hay không, ta làm như sau: Bước 1: Vẽ tia OM. Bước 2: Xét tia Om có nằm giữa hai tia Ox Oy hay không? Bước 3: Kết luận bài toán. DẠNG 4. ĐO GÓC CHO TRƯỚC. Để đo góc ta tiến hành theo các bước: B1: Đặt thước đo góc sao cho tâm thước trùng với đỉnh của góc. B2: Xoay thước sao cho một cạnh của góc đi qua vạch số 0 của thước. B3: Quan sát xem cạnh còn lại của góc đi qua vạch nào của thước khi đó ta sẽ được số đo góc ấy. DẠNG 5. VẼ GÓC THEO ĐIỀU KIỆN CHO TRƯỚC. Để vẽ góc xOy khi biết số đo bằng 0 n ta tiến hành như sau: B1: Vẽ tia Ox. B2: Đặt thước đo góc sao cho tâm của thước trùng với O, vạch số 0 của thước nằm trên tia Ox. B3: Đánh dấu một điểm trên vạch chia độ của thước tương ứng với số chỉ n độ, kẻ tia Oy đi qua điểm đã đánh dấu. Ta có 0 xOy n. DẠNG 6. SO SÁNH GÓC. Đo góc rồi so sánh các số đo góc. DẠNG 7. TÍNH GÓC GIỮA HAI KIM ĐỒNG HỒ. Hai tia trung gốc tạo thành một góc gọi là “góc không”. Số đo góc không là 0o. Lúc một giờ, góc tạo bởi kim giờ và kim phút là 30o.
Tài liệu dạy thêm - học thêm chuyên đề đoạn thẳng, trung điểm của đoạn thẳng
Tài liệu gồm 21 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề đoạn thẳng, trung điểm của đoạn thẳng, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÍ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1. Nhận biết đoạn thẳng. Mỗi đoạn thẳng có một độ dài. Độ dài đoạn thẳng là một số lớn hơn 0. Dạng 2. So sánh đoạn thẳng. Để so sánh hai đoạn thẳng, ta thường làm như sau: Bước 1. Đo độ dài của mỗi đoạn thẳng; Bước 2. So sánh độ dài của các đoạn thẳng đó. Dạng 3. Vẽ đoạn thẳng trên tia. Cho tia Ox vẽ điểm A trên tia Ox sao cho OA cm 4. Trên tia Ox ta luôn vẽ được một điểm M sao cho OM a cm. Cho tia Ox trên tia Ox vẽ hai điểm A và B sao cho OA cm 3 OB cm 5. Có nhận xét gì về vị trí của điểm A so với điểm O và B. + Trên cùng một tia Ox vẽ hai điểm A và B nếu OA OB thì điểm A nằm giữa hai điểm O và B. + Trên cùng một tia Ox vẽ ba điểm A B C nếu OA OB OC thì B nằm giữa A và C. Dạng 4. Trung điểm của đoạn thẳng. Cho đoạn thẳng AB cm 4. Điểm M thuộc đoạn AB sao cho AM BM cm 2. Khi đó điểm M gọi là trung điểm của đoạn AB. Dạng 4.1. Tính độ dài đoạn thẳng liên quan tới trung điểm. Dạng 4.2. Chứng minh một điểm là trung điểm của một đoạn thằng, chứng minh đẳng thức độ dài có liên quan. Dạng 5. Giải các bài toán thực tế có liên quan đến đoạn thẳng, độ dài đoạn thẳng và trung điểm của đoạn thẳng. Giải các bài toán thực tế có liên quan đến đoạn thẳng, độ dài đoạn thẳng và trung điểm của đoạn thẳng.