Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu dạy thêm - học thêm chuyên đề tập hợp các số nguyên

Tài liệu gồm 12 trang, tổng hợp tóm tắt lý thuyết, hướng dẫn phương pháp giải các dạng toán và bài tập chuyên đề tập hợp các số nguyên, hỗ trợ giáo viên và học sinh lớp 6 trong quá trình dạy thêm – học thêm môn Toán 6. PHẦN I . TÓM TẮT LÝ THUYẾT. PHẦN II . CÁC DẠNG BÀI. Dạng 1 . Điền kí hiệu thích hợp vào chỗ trống. – Dạng điền kí hiệu. – Tập hợp số tự nhiên. – Tập hợp số nguyên gồm các số nguyên âm, số 0 và số nguyên dương. – A B nếu mọi phần tử của A đều thuộc B. – Dạng điền Đ (đúng) hoặc chữ S (sai); đánh dấu “x” vào ô đúng hoặc sai. Dạng 2 . Biểu diễn số nguyên trên trục số. Trục số là hình biểu diễn gồm một đường thẳng nằm ngang hoặc thẳng đứng, một đầu gắn với mũi tên (biểu thị chiều dương) được chia thành các khoảng bằng nhau (được gọi là đơn vị) và ghi kèm các số tương ứng. Điểm 0 (biểu diễn số 0) được gọi là điểm gốc của trục số (thường đặt tên là O). Điểm biểu diễn số a trên trục số gọi là điểm a. Với trục số nằm ngang: Chiều từ trái sang phải là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Với trục số thẳng đứng: Chiều từ dưới lên trên là chiều dương, với hai điểm a b trên trục số, nếu điểm a nằm trước điểm b thì a nhỏ hơn b. Dạng 3 . So sánh hai hay nhiều số nguyên. Cách 1 : Biểu diễn các số nguyên cần so sánh trên trục số. Giá trị các số nguyên tăng dần từ trái sang phải (điểm a nằm bên trái điểm b thì số nguyên a bé hơn số nguyên b). Cách 2 : Căn cứ vào các nhận xét sau: Số nguyên dương lớn hơn 0. Số nguyên âm nhỏ hơn 0. Số nguyên dương lớn hơn số nguyên âm. Trong hai số nguyên dương, số nào có giá trị tuyệt đối lớn hơn thì số ấy lớn hơn. Trong hai số nguyên âm, số nào có giá trị tuyệt đối nhỏ hơn thì số ấy lớn hơn. Kiến thức về giá trị tuyệt đối: – Giá trị tuyệt đối của một số tự nhiên là chính nó. – Giá trị tuyệt đối của một số nguyên âm là số đối của nó. – Giá trị tuyệt đối của một số nguyên là một số tự nhiên. – Hai số nguyên đối nhau có cùng một giá trị tuyệt đối. Dạng 4 . Viết tập hợp số. Tên tập hợp được viết bằng chữ cái in hoa như: A, B, C …. Hai cách viết tập hợp số: Cách 1: Liệt kê các phần tử. Cách 2: Chỉ ra các tính chất đặc trưng. Chú ý: + Các phần tử của một tập hợp được viết trong hai dấu ngoặc nhọn { }, ngăn cách nhau bởi dấu “;” (nếu có phần tử số) hoặc dấu “,” nếu không có phần tử số. + Mỗi phần tử được liệt kê một lần, thứ tự liệt kê tùy ý. Dạng 5 . Sử dụng số nguyên âm trong thực tế. Số dương và số âm được dùng để biểu thị các đại lượng đối lập nhau hoặc có hướng ngược nhau. Số âm thường dùng để chỉ: – Nhiệt độ dưới 0C. – Độ cao dưới mực nước biển. – Số tiền còn nợ. – Số tiền lỗ. – Độ cận thị. – Thời gian trước Công Nguyên.

Nguồn: toanmath.com

Đọc Sách

Tóm tắt lý thuyết và bài tập trắc nghiệm mở rộng phân số, phân số bằng nhau
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm mở rộng phân số, phân số bằng nhau Bản PDF - Nội dung bài viết Sytu giới thiệu tài liệu phân số và phân số bằng nhau cho học sinh lớp 6 Sytu giới thiệu tài liệu phân số và phân số bằng nhau cho học sinh lớp 6 Sytu xin gửi đến quý thầy cô và các em học sinh lớp 6 tài liệu học về phân số và phân số bằng nhau. Trước hết, chúng ta cần hiểu rõ khái niệm phân số, trong đó a/b được gọi là một phân số với a là tử số và b là mẫu số. Mọi số nguyên cũng có thể được viết dưới dạng phân số với mẫu số là 1. Hai phân số a/b và c/d được cho là bằng nhau nếu ad = bc. Ngoài ra, chúng ta cần biết các tính chất cơ bản của phân số như: khi nhân hoặc chia cả tử và mẫu với cùng một số nguyên thì ta vẫn giữ nguyên phân số, hoặc khi rút gọn phân số bằng cách chia tử số và mẫu số cho ước chung của chúng. Tài liệu cung cấp bài tập trắc nghiệm theo các dạng toán khác nhau như: phân số, phân số bằng nhau, tính chất cơ bản của phân số, rút gọn phân số. Các bài tập được sắp xếp từ dễ đến khó, kèm theo đáp án và hướng dẫn giải chi tiết để giúp các em hiểu rõ hơn về chủ đề này khi học Toán lớp 6.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có tâm đối xứng
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm hình có tâm đối xứng Bản PDF Sytu xin giới thiệu đến quý thầy cô và các em học sinh lớp 6 tài liệu tóm tắt lý thuyết và bài tập trắc nghiệm về chuyên đề hình có tâm đối xứng. Trong tài liệu này, các bài toán được tổng hợp và phân loại theo các dạng toán, từ dễ đến khó, cung cấp đáp án và hướng dẫn giải chi tiết. Điều này sẽ giúp các em tham khảo và nâng cao kiến thức Toán của mình.Trong phần tóm tắt lý thuyết, chúng ta sẽ tìm hiểu về định nghĩa của hình có tâm đối xứng, trung điểm và tâm đối xứng. Cụ thể, chúng ta sẽ biết rằng hai điểm A và B là đối xứng qua trung điểm O nếu AB đi qua O. Hình bình hành cũng được giải thích là hình có tâm đối xứng, với góc chéo là tâm đối xứng của hình.Phần bài tập trắc nghiệm được chia thành bốn mức độ: nhận biết, thông hiểu, vận dụng và vận dụng cao. Điều này giúp các em nắm vững kiến thức từ cơ bản đến nâng cao và rèn luyện kỹ năng giải bài toán Toán một cách khéo léo.Mời quý thầy cô và các em học sinh tải file WORD để tiện tham khảo và sử dụng. Hy vọng rằng tài liệu này sẽ giúp các em học tốt môn Toán và đạt kết quả cao trong học tập.
Tóm tắt lý thuyết và bài tập trắc nghiệm hình có trục đối xứng
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm hình có trục đối xứng Bản PDF Sytu hân hạnh giới thiệu đến các thầy cô giáo và các em học sinh lớp 6 tài liệu về hình có trục đối xứng. Tài liệu bao gồm tóm tắt lý thuyết và bài tập trắc nghiệm, được chia thành các mức độ nhận biết, thông hiểu, vận dụng và vận dụng cao.Trước tiên, trong phần tóm tắt lý thuyết, học sinh sẽ hiểu rõ về khái niệm hình có trục đối xứng. Một hình được coi là hình có trục đối xứng khi có một đường thẳng chia hình đó thành hai phần bằng nhau và khi gấp hình theo đường thẳng đó, hai phần đó sẽ chồng lên nhau. Đường thẳng chia đó được gọi là trục đối xứng của hình. Không phải tất cả các hình đều có trục đối xứng, một hình có thể có một hoặc nhiều trục đối xứng.Tiếp theo, trong phần bài tập trắc nghiệm, các bài toán được chọn lọc và phân loại theo độ khó từ cơ bản đến nâng cao. Học sinh sẽ được đánh giá và thử thách qua các mức độ nhận biết, thông hiểu, vận dụng và vận dụng cao. Mỗi bài toán đều có đáp án và hướng dẫn giải chi tiết, giúp học sinh tự tin khi học chương trình Toán lớp 6.Sytu hy vọng rằng tài liệu này sẽ giúp các em hiểu rõ hơn và tự tin hơn khi giải các bài toán liên quan đến hình có trục đối xứng. File Word đã được chuẩn bị để quý thầy cô giáo có thể sử dụng dễ dàng. Chúc các em học tốt và thành công!
Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học
Nội dung Tóm tắt lý thuyết và bài tập trắc nghiệm chu vi và diện tích của một số tứ giác đã học Bản PDF - Nội dung bài viết Chu vi và diện tích của các hình tứ giác1. Chu vi và diện tích của hình vuông, hình chữ nhật, hình thoi, hình bình hành và hình thang cân:2. Các dạng bài toán thường gặp: Chu vi và diện tích của các hình tứ giác Hướng dẫn này giới thiệu về cách tính chu vi và diện tích các hình tứ giác cơ bản mà các em học sinh lớp 6 đã học. 1. Chu vi và diện tích của hình vuông, hình chữ nhật, hình thoi, hình bình hành và hình thang cân: - Hình vuông: Chu vi = 4a, Diện tích = a^2. - Hình chữ nhật: Chu vi = 2(a+b), Diện tích = a*b. - Hình thoi: Chu vi = 4a, Diện tích = (m*n)/2. - Hình bình hành: Chu vi = 2(a+b), Diện tích = a*h. - Hình thang cân: Chu vi = a+b+2c, Diện tích = (a+b)*h/2. 2. Các dạng bài toán thường gặp: - Dạng 1: Tính diện tích các hình đã biết công thức tính diện tích. - Dạng 2: Tính một yếu tố của hình khi biết chu vi và diện tích. - Dạng 3: Bài toán thực tế, sắp xếp kiến thức để giải bài toán. Bài tập trắc nghiệm được chia thành hàng loạt các dạng toán, từ cơ bản đến nâng cao, với đáp án và hướng dẫn giải chi tiết. Bộ tài liệu này sẽ giúp các em ôn tập và nắm vững kiến thức về chu vi và diện tích của các hình tứ giác.