Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Bài tập Toán 10 học kì 1 - Nguyễn Văn Thanh

Tài liệu gồm 94 trang, được biên soạn bởi thầy giáo Nguyễn Văn Thanh, tuyển tập bài tập Toán 10 học kì 1 theo các dạng bài. ĐẠI SỐ 10 – QUYỂN 1 – HỌC KỲ 1. CHƯƠNG I. MỆNH ĐỀ – TẬP HỢP. Bài 1. Mệnh đề. Bài 2. Tập hợp + Bài 3. Các phép toán tập hợp. + Dạng 1. Phần tử của tập hợp, các xác định tập hợp. + Dạng 2. Tập hợp con, tập hợp bằng nhau. + Dạng 3. Các phép toán trên tập hợp. Bài 3. Các tập hợp số. + Dạng 1. Biểu diễn tập hợp số. + Dạng 2. Các phép toán trên tập hợp số. + Dạng 3. Các bài toán tìm điều kiện của tham số. CHƯƠNG II. HÀM SỐ BẬC NHẤT VÀ BẬC HAI. Bài 1. Hàm số. + Dạng 1. Tập xác định của hàm số. + Dạng 1.1 Hàm số phân thức. + Dạng 1.2 Hàm số chứa căn thức. + Dạng 1.3 Tìm tập xác định của hàm số có điều kiện. + Dạng 2. Tính chẵn, lẻ của hàm số. + Dạng 2.1 Xác định tính chẵn, lẻ của hàm số cho trước. + Dạng 2.2 Xác định tính chẵn, lẻ thông qua tính chất của đồ thị hàm số. + Dạng 2.3 Xác định tính chẵn, lẻ của hàm số có điều kiện cho trước. + Dạng 3. Sự biến thiên của hàm số. + Dạng 3.1 Xác định sự biến thiên của hàm số cho trước. + Dạng 3.2 Xác định sự biến thiên thông qua đồ thị của hàm số. + Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất của hàm số. + Dạng 4.1 Biến đổi sử dụng tập giá trị của hàm số. + Dạng 4.2 Phân tích hằng đẳng thức. + Dạng 4.3 Áp dụng bất đẳng thức Cô-si, Bu-nhi-a-cốp-xki. + Dạng 5. Một số bài toán liên quan đến đồ thị của hàm số. + Dạng 6. Xác định biểu thức của hàm số. Bài 2. Hàm số y = ax + b. + Dạng 1. Chiều biến thiên của hàm số bậc nhất. + Dạng 1.1 Xét tính đồng biến, nghịch biến của hàm số. + Dạng 1.2 Định m để hàm số đồng biến, nghịch biến trên R. + Dạng 2. Vị trí tương đối, sự tương giao giữa các đường thẳng, điểm cố định của họ đường thẳng. + Dạng 2.1 Vị trí tương đối. + Dạng 2.2 Sự tương giao. + Dạng 2.3 Điểm cố định của họ đường thẳng. + Dạng 3. Đồ thị hàm số bậc nhất. + Dạng 3.1 Đồ thị hàm số y = ax + b. + Dạng 3.2 Đồ thị hàm số chứa dấu giá trị tuyệt đối. + Dạng 4. Xác định hàm số thỏa mãn điều kiện cho trước. + Dạng 4.0 Xác định điều kiện để hàm số đã cho là hàm số bậc nhất. + Dạng 4.1 Đi qua 2 điểm cho trước. + Dạng 4.2 Đi qua 1 điểm cho trước và song song (vuông góc, cắt, đối xứng …) với một đường thăng khác. + Dạng 4.3 Liên quan đến diện tích, khoảng cách. Bài 3. Hàm số bậc hai. + Dạng 1. Chiều biến thiên của hàm số bậc hai. + Dạng 1.1 Xác định chiều biến thiên thiên của hàm số cho trước. + Dạng 1.2 Xác định m thỏa mãn điều kiện cho trước. + Dạng 2. Xác định hàm số bậc hai thỏa mãn điều kiện cho trước. + Dạng 2.1 Xác định tọa độ đỉnh, trục đối xứng của đồ thị hàm số. + Dạng 2.2 Khi biết tọa độ đỉnh và điểm đi qua. + Dạng 2.3 Khi biết các điểm đi qua. + Dạng 3. Đọc đồ thị, bảng biến thiên của hàm số bậc hai. + Dạng 3.1 Xác định hình dáng của đồ thị, bảng biến thiên khi biết hàm số. + Dạng 3.2 Xác định dấu hệ số của hàm số khi biết đồ thị của nó. + Dạng 3.3 Xác định hàm số khi biết đồ thị của nó. + Dạng 3.4 Đồ thị hàm số chứa dấu giá trị tuyệt đối. + Dạng 4. Giá trị lớn nhất, giá trị nhỏ nhất. + Dạng 4.1 Tìm giá trị lớn nhất, giá trị nhỏ nhất của hàm số cho trước. + Dạng 4.2 Tìm m thỏa mãn điều kiện cho trước. + Dạng 5. Sự tương giao giữa parabol với đồ thị các hàm số khác. + Dạng 5.1 Sự tương giao đồ thị của các hàm số tường minh số liệu. + Dạng 5.2 Biện luận tương giao đồ thị theo tham số m. + Dạng 5.3 Bài toán tương giao đồ thị hàm số chứa dấu giá trị tuyệt đối. HÌNH HỌC 10 – QUYỂN 1- HỌC KỲ 1. CHƯƠNG I. VECTƠ. Bài 1. Các định nghĩa. + Dạng 1. Các bài toán về khái niệm véctơ. + Dạng 2. Chứng minh đẳng thức véctơ. + Dạng 3. Xác định điểm thỏa mãn điều kiện cho trước. + Dạng 4. Tìm tập hợp điểm thỏa mãn điều kiện cho trước. + Dạng 5. Phân tích vectơ qua hai vectơ không cùng phương. + Dạng 6. Xác định và tính độ lớn véctơ. Bài 2. Hệ trục tọa độ. + Dạng 1. Sử dụng các kiến thức về trục, tọa độ vectơ trên trục và tọa độ của một điểm trên trục để giải một số bài toán. + Dạng 2. Tọa độ vectơ. + Dạng 2.1 Sử dụng các công thức tọa độ của tổng, hiệu, tích vectơ với một số để giải toán. + Dạng 2.2 Điều kiện 2 véc tơ cùng phương, thẳng hàng, bằng nhau. + Dạng 2.3 Biểu diễn một vectơ theo 2 vectơ không cùng phương. + Dạng 3. Tọa độ điểm. + Dạng 3.1 Xác định tọa độ trung điểm, tọa độ trọng tâm, tọa độ điểm đối xứng. + Dạng 3.2 Xác định tọa độ điểm thỏa mãn điều kiện cho trước. + Dạng 3.3 Một số bài toán gtln-gtnn của biểu thức chứa véctơ. CHƯƠNG II. TÍCH VÔ HƯỚNG CỦA HAI VÉCTƠ VÀ ỨNG DỤNG. Bài 1. Giá trị lượng giác của một góc bất kì từ 0 đến 180. + Dạng 1. Dấu của các giá trị lượng giác. Giá trị lượng giác. + Dạng 2. Cho biết một giá trị lượng giác, tính các giá trị lượng giác còn lại. + Dạng 3. Chứng minh, rút gọn biểu thức lượng giác. + Dạng 4. Tính giá trị biểu thức lượng giác. Bài 2. Tích vô hướng của hai vec to và ứng dụng. + Dạng 1. Tích vô hướng. + Dạng 2. Xác định góc của hai véctơ. + Dạng 3. Ứng dụng tích vô hướng chứng minh vuông góc. + Dạng 4. Một số bài toán liên quan đến độ dài véctơ. Bài 3. Các hệ thức lượng trong tam giác, giải tam giác. + Dạng 1. Định lý cosin, áp dụng định lý cosin để giải tam giác.

Nguồn: toanmath.com

Đọc Sách

Bài tập bất đẳng thức và bất phương trình - Diệp Tuân
Tài liệu gồm 231 trang, được biên soạn bởi thầy giáo Diệp Tuân, tóm tắt lý thuyết, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập trắc nghiệm và tự luận chuyên đề bất đẳng thức và bất phương trình, từ cơ bản đến nâng cao, giúp học sinh lớp 10 rèn luyện khi học chương trình Đại số 10 chương 4. BÀI 1 . BẤT ĐẲNG THỨC. Dạng toán 1. Sử dụng định nghĩa và tích chất cơ bản. + Loại 1. Biến đổi tương đương về bất đẳng thức đúng. + Loại 2. Xuất phát từ một bất đẳng thức đúng ta biến đổi đến bất đẳng thức cần chứng minh. Dạng toán 2. Sử dụng bất đẳng thức Cauchy (Cô-si) để chứng minh bất đẳng thức và tìm giá trị lớn nhất, nhỏ nhất. + Loại 1. Vận dụng trực tiếp bất đẳng thức Cauchy (Cô-si). + Loại 2. Kĩ thuật tách, thêm bớt, ghép cặp. BÀI 2 . ĐẠI CƯƠNG VỀ BẤT PHƯƠNG TRÌNH MỘT ẨN. Dạng toán 1. Tìm điều kiện xác định của bất phương trình. Dạng toán 2. Xác định các bất phương trình tương đương và giải bất phương trình bằng phép biến đổi tương đương. BÀI 3 . BẤT PHƯƠNG TRÌNH VÀ HỆ BẬC NHẤT NHIỀU ẨN. Dạng toán 1. Giải bất phương trình dạng ax + b < 0. Dạng toán 2. Giải hệ bất phương trình bậc nhất một ẩn. Dạng toán 3. Bất phương trình quy về bất phương trình, hệ bất phương trình bậc nhất một ẩn. BÀI 4 . BẤT PHƯƠNG TRÌNH VÀ HỆ BẤT PHƯƠNG TRÌNH HAI ẨN. Dạng toán 1. Xác định miền nghiệm của bất phương trình và hệ bất phương trình bậc nhất hai ẩn. Dạng toán 2. Ứng dụng vào giải toán kinh tế. BÀI 5 . DẤU CỦA NHỊ THỨC BẬC NHẤT. Dạng toán 1. Lập bảng xét dấu biểu thức chứa nhị thức bậc nhất một ẩn. Dạng toán 2. Ứng dụng dấu của nhị thức bậc nhất giải bất phương trình. BÀI 6 . DẤU CỦA TAM THỨC BẬC HAI. Dạng toán 1. Xét dấu biểu thức chứa tam thức bậc hai một ẩn. Dạng toán 2. Tìm tham số m để biểu thức luôn cùng dấu (luôn dương hoặc luôn âm). BÀI 7 . BẤT PHƯƠNG TRÌNH BẬC HAI. Dạng 1. Giải bất phương trình bậc hai. Dạng 2. Giải bất phương trình tích và thương chứa hàm bậc hai. Dạng 3. Giải hệ bất phương trình. BÀI 8 . PHƯƠNG TRÌNH VÀ BẤT PHƯƠNG TRÌNH QUY VỀ BẬC HAI. Dạng 1. Dạng toán đặt ẩn phụ. Dạng 2. Tìm tham số m để phương trình, bất phương trình có nghiệm. Dạng 3. Sử dụng phương pháp biến đổi tương đương để giải phương trình. Dạng 4. Sử dụng phương pháp biến đổi tương đương để giải bất phương trình. Dạng 5. Sử dụng phương pháp đặt ẩn phụ để giải bất phương trình. Dạng 6. Giải bất phương trình có chứa tham số m. Dạng 7. Phương pháp đánh giá. BÀI 9 . ÔN TẬP ĐẠI SỐ 10 CHƯƠNG IV – BẤT ĐẲNG THỨC VÀ BẤT PHƯƠNG TRÌNH.
Bài tập trắc nghiệm bất đẳng thức và bất phương trình có lời giải chi tiết
Tài liệu gồm 349 trang tuyển tập các câu hỏi và bài toán trắc nghiệm bất đẳng thức và bất phương trình có lời giải chi tiết trong chương trình Đại số 10 chương 4, các bài toán được đánh số ID và sắp xếp theo từng nội dung bài học: + Bài 1. Bất đẳng thức. + Bài 2. Đại cương về bất phương trình. + Bài 3. Bất phương trình và hệ bất phương trình. + Bài 4. Dấu của nhị thức bậc nhất. + Bài 5. Bất phương trình và hệ bất phương trình bậc nhất hai ẩn. + Bài 6. Dấu của tam thức bậc hai. + Bài 7. Bất phương trình bậc hai. + Bài 8. Một số phương trình và bất phương trình quy về bậc hai. Trong mỗi bài học, các câu hỏi được sắp xếp theo 4 mức độ nhận thức với độ khó tăng dần: nhận biết, thông hiểu, vận dụng và vận dụng cao. [ads] Trích dẫn tài liệu bài tập trắc nghiệm bất đẳng thức và bất phương trình có lời giải chi tiết : + Cho biểu thức y = f(x) = √(1 – x^2). Kết luận nào sau đây đúng? A. Hàm số f(x) chỉ có giá trị lớn nhất, không có giá trị nhỏ nhất. B. Hàm số f(x) chỉ có giá trị nhỏ nhất, không có giá trị lớn nhất. C. Hàm số f(x) có giá trị nhỏ nhất và giá trị lớn nhất. D. Hàm số f(x) không có giá trị nhỏ nhất và không có giá trị lớn nhất. + Cho hệ bất phương trình 2x – 3/2y ≥ 1 và 4x – 3y ≤ 2 có tập nghiệm S. Mệnh đề nào sau đây là đúng? A. (-1/4;-1) ∉ S. B. S = {(x,y) | 4x – 3y = 2}. C.Biểu diễn hình học của S là nửa mặt phẳng chứa gốc tọa độ và kể cả bờ d, với d là là đường thẳng 4x – 3y = 2. D.Biểu diễn hình học của S là nửa mặt phẳng không chứa gốc tọa độ và kể cả bờ d, với d là là đường thẳng 4x – 3y = 2. + Cho Q = a^2 + b^2 + c^2 – ab – bc – ca với a, b, c là ba số thực. Khẳng định nào sau đây là đúng? A. Q ≥ 0 chỉ đúng khi a, b, c là những số dương. B. Q ≥ 0 chỉ đúng khi a, b, c là những số không âm. C. Q > 0 với a, b, c là những số bất kì. D. Q ≥ 0 với a, b, c là những số bất kì.
Bài tập bất đẳng thức và bất phương trình có lời giải chi tiết - Nguyễn Phú Khánh, Huỳnh Đức Khánh
Tài liệu gồm 118 trang tuyển chọn và giải chi tiết các bài tập trắc nghiệm chủ đề bất đẳng thức và bất phương trình trong chương trình Đại số 10 chương 4, các bài tập được chia thành nhiều dạng bài khác nhau, đa số thuộc mức độ vận dụng. Tài liệu được biên soạn bởi thầy Nguyễn Phú Khánh và thầy Huỳnh Đức Khánh. Nội dung tài liệu : Bài 01. Bất đẳng thức Bài 02. Bất phương trình và hệ bất phương trình bậc nhất một ẩn + Vấn đề 1. Điều kiện xác định của bất phương trình + Vấn đề 2. Cặp bất phương trình tương đương + Vấn đề 3. Bất phương trình bậc nhất một ẩn + Vấn đề 4. Hệ bất phương trình bậc nhất một ẩn Bài 03. Dấu của nhị thức bậc nhất + Vấn đề 1. Xét dấu nhị thức bậc nhất + Vấn đề 2. Bất phương trình tích + Vấn đề 3. Bất phương trình chứa ẩn ở mẫu + Vấn đề 4. Bất phương trình chứa trị tuyệt đối [ads] Bài 04. Bất phương trình bậc nhất hai ẩn + Vấn đề 1. Bất phương trình bậc nhất hai ẩn + Vấn đề 2. Hệ bất phương trình bậc nhất hai ẩn + Vấn đề 3. Bài toán tối ưu Bài 05. Dấu của tam thức bậc hai + Vấn đề 1. Dấu của tam thức bậc hai + Vấn đề 2. Ứng dụng về dấu của tam thức bậc hai để giải phương trình tích + Vấn đề 3. Ứng dụng về dấu của tam thức bậc hai để giải phương trình chứa ẩn ở mẫu + Vấn đề 4. Ứng dụng về dấu của tam thức bậc hai để tìm tập xác định của hàm số + Vấn đề 5. Tìm điều kiện của tham số để phương trình bậc hai vô nghiệm – có nghiệm – có hai nghiệm phân biệt + Vấn đề 6. Tìm điều kiện của tham số để phương trình bậc hai có nghiệm thỏa điều kiện cho trước + Vấn đề 7. Tìm điều kiện của tham số để bất phương trình vô nghiệm – có nghiệm – nghiệm đúng + Vấn đề 8. Hệ bất phương trình bậc hai Xem thêm :  Bài tập phương trình và hệ phương trình có lời giải chi tiết – Nguyễn Phú Khánh, Huỳnh Đức Khánh
Bài tập hệ thức lượng trong tam giác, vectơ Toán 10 Cánh Diều
Tài liệu gồm 315 trang, được biên soạn bởi thầy giáo Nguyễn Bảo Vương, tuyển tập các dạng bài tập tự luận và trắc nghiệm chuyên đề hệ thức lượng trong tam giác, vectơ trong chương trình Toán 10 Cánh Diều, có đáp án và lời giải chi tiết. BÀI 1 . GIÁ TRỊ LƯỢNG GIÁC CỦA MỘT GÓC TỪ 0° ĐẾN 180°. ĐỊNH LÍ CÔSIN VÀ ĐỊNH LÍ SIN TRONG TAM GIÁC. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Giá trị lượng giác của một góc từ 0° đến 180°. + Dạng 2. Định lí cosin. + Dạng 3. Định lí sin. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Giá trị lượng giác của một góc từ 0° đến 180°. + Dạng 2. Định lí cosin. + Dạng 3. Định lí sin. BÀI 2 . GIẢI TAM GIÁC. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Giải tam giác. + Dạng 2. Tính diện tích tam giác. + Dạng 3. Áp dụng vào bài toán thực tiễn. + Dạng 4. Nhận dạng tam giác. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Giải tam giác. + Dạng 2. Tính diện tích tam giác. + Dạng 3. Áp dụng vào bài toán thực tiễn. + Dạng 4. Nhận dạng tam giác. BÀI 3 . KHÁI NIỆM VECTƠ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. PHẦN C. BÀI TẬP TRẮC NGHIỆM. BÀI 4 . TỔNG VÀ HIỆU CỦA HAI VECTƠ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Cộng trừ véctơ. + Dạng 2. Xác định điểm thỏa mãn điều kiện. + Dạng 3. Tính độ dài véctơ. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Cộng trừ véctơ. + Dạng 2. Xác định điểm thỏa mãn điều kiện. + Dạng 3. Tính độ dài véctơ. BÀI 5 . TÍCH CỦA MỘT SỐ VỚI MỘT VECTƠ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Dựng và tính độ dài véc–tơ. + Dạng 2. Phân tích véc-tơ. + Dạng 3. Chứng minh đẳng thức véc-tơ. + Dạng 4. Chứng minh một biểu thức véc–tơ không phụ thuộc vào điểm di động. + Dạng 5. Chứng minh hai điểm trùng nhau, hai tam giác có cùng trọng tâm. + Dạng 6: thẳng hàng, cố định, đồng qui. + Dạng 7. Xác định điểm, tập hợp điểm thoả mãn đẳng thức véc-tơ. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Dựng và tính độ dài véc–tơ. + Dạng 2. Phân tích véc-tơ. + Dạng 3. Chứng minh đẳng thức véc-tơ. + Dạng 4. Chứng minh một biểu thức véc–tơ không phụ thuộc vào điểm di động. + Dạng 5. Chứng minh hai điểm trùng nhau, hai tam giác có cùng trọng tâm. + Dạng 6: thẳng hàng, cố định, đồng qui. + Dạng 7. Xác định điểm, tập hợp điểm thoả mãn đẳng thức véc-tơ. BÀI 6 . TÍCH VÔ HƯỚNG CỦA HAI VECTƠ. PHẦN A. LÝ THUYẾT. PHẦN B. BÀI TẬP TỰ LUẬN. + Dạng 1. Tính tích vô hướng của hai vectơ, tính góc giữa hai vectơ. + Dạng 2. Tính độ dài của một đoạn thẳng. + Dạng 3. Chứng minh đẳng thức về tích vô hướng. + Dạng 4. Chứng minh sự vuông góc của hai vectơ, hai đường thẳng. + Dạng 5. Tập hợp điểm. PHẦN C. BÀI TẬP TRẮC NGHIỆM. + Dạng 1. Tính tích vô hướng của hai vectơ, tính góc giữa hai vectơ. + Dạng 2. Tính độ dài của một đoạn thẳng. + Dạng 3. Chứng minh đẳng thức về tích vô hướng. + Dạng 4. Chứng minh sự vuông góc của hai vectơ, hai đường thẳng. + Dạng 5. Tập hợp điểm.