Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Thanh Xuân Hà Nội

Nội dung Đề khảo sát lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Thanh Xuân Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Thanh Xuân Hà Nội Đề khảo sát lớp 9 môn Toán năm 2019 2020 phòng GD ĐT Thanh Xuân Hà Nội Ngày 30 tháng 05 năm 2020, phòng Giáo dục và Đào tạo quận Thanh Xuân, thành phố Hà Nội đã tổ chức kỳ thi kiểm tra khảo sát học sinh lớp 9 môn Toán giai đoạn học kỳ 2 năm học 2019 – 2020. Đề khảo sát Toán lớp 9 năm 2019 – 2020 phòng GD&ĐT Thanh Xuân – Hà Nội gồm có 05 bài toán dạng tự luận, thời gian làm bài 90 phút, đề thi có 01 trang. Trích dẫn đề khảo sát Toán lớp 9 năm 2019 – 2020 phòng GD&ĐT Thanh Xuân – Hà Nội: 1. Vào thời điểm các tia nắng mặt trời tạo với mặt đất một góc 60°, bóng của một cái tháp trên mặt đất dài 20m. Tính chiều cao của tháp (kết quả làm tròn đến chữ số thập phân thứ hai). 2. Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = mx + 2. a) Tìm m để đường thẳng (d) đi qua điểm A(2;3). b) Tìm tất cả giá trị của m để đường thẳng (d) cắt parabol (P) tại hai điểm phân biệt có tọa độ thỏa mãn y1 + y2 = 5. 3. Cho nửa đường tròn tâm O đường kính AB. C là một điểm nằm trên đoạn OA (C khác A; C khác O). Trên nửa mặt phẳng bờ AB chứa nửa đường tròn, vẽ các tia tiếp tuyến Ax và By với nửa đường tròn. M là điểm nằm trên nửa đường tròn (M khác A; M khác B). Đường thẳng qua M vuông góc với MC cắt các tia Ax, By lần lượt tại P và Q. a) Chứng minh tứ giác APMC nội tiếp. b) Chứng minh hai tam giác MAB và CPQ đồng dạng. c) Gọi D là giao điểm của CP và AM; E là giao điểm của CQ và BM. Chứng minh OM đi qua trung điểm của DE.

Nguồn: sytu.vn

Đọc Sách

Đề KSCL Toán vào lớp 10 năm 2023 - 2024 phòng GDĐT thành phố Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán kỳ thi tuyển sinh vào lớp 10 THPT năm học 2023 – 2024 phòng Giáo dục và Đào tạo thành phố Bắc Ninh; đề thi hình thức 40% trắc nghiệm (32 câu – 50 phút) kết hợp 60% tự luận (04 câu – 70 phút); đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề KSCL Toán vào lớp 10 năm 2023 – 2024 phòng GD&ĐT thành phố Bắc Ninh : + Theo kế hoạch phòng họp được bố trí cho 120 người tới dự. Đến ngày diễn ra buổi họp, có 160 người tham gia nên phải kê thêm 2 dãy ghế và mỗi dãy phải kê thêm một ghế nữa thì vừa đủ. Tính số dãy ghế dự định lúc đầu. Biết rằng số dãy ghế lúc đầu trong phòng nhiều hơn 20 dãy ghế và số ghế trên mỗi dãy bằng nhau. + Cho đường tròn tâm O đường kính AB M là điểm chính giữa cung AB trên cung nhỏ BM lấy điểm K bất kỳ (K khác B và M), kẻ KP vuông góc với AB tại P. Kẻ MH vuông góc AK tại H. a) Chứng minh bốn điểm A O H M thuộc một đường tròn. b) Chứng minh OH là tia phân giác của góc MOK. c) Tìm vị trí điểm K trên cung BM để tỉ số diện tích tam giác PKO và tam giác MAO là 1 2. + Khẳng định nào sau đây đúng? A. Đường tròn là hình không có trục đối xứng. B. Đường tròn là hình có vô số trục đối xứng. C. Đường tròn là hình có hai trục đối xứng. D. Đường tròn là hình có một trục đối xứng.
Đề KSCL Toán vào 10 lần 1 năm 2023 - 2024 trường THPT Đào Duy Anh - Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán 9 ôn thi tuyển sinh vào lớp 10 THPT lần 1 năm học 2023 – 2024 trường THPT Đào Duy Anh, tỉnh Thanh Hóa; kỳ thi được diễn ra vào ngày 19 tháng 03 năm 2023. Trích dẫn Đề KSCL Toán vào 10 lần 1 năm 2023 – 2024 trường THPT Đào Duy Anh – Thanh Hóa : + Trong mặt phẳng toạ độ Oxy, cho hai đường thẳng (d): y = -x + n – 1 và (d’): y = (m2 − 3)x + m. Tìm m và n để (d) vuông góc với (d’), đồng thời (d) cắt (d’) tại điểm A(3;1). + Cho phương trình x2 − 2(m + 1)x + m2 + 1 = 0 với m là tham số. Tìm các giá trị của m để phương trình đã cho có hai nghiệm phân biệt x1, x2 (x1 < x2) thoả mãn (2×2 − 3)2 – (2×1 − 3)2 = 32m – 16. + Cho đường tròn (O;R), đường kính AB cố định, điểm I nằm giữa O và A sao cho AI = 1/3.AO. Kẻ dây cung MN vuông góc với AB tại I, gọi C là điểm tùy ý thuộc cung lớn MN sao cho C không trùng với M, N và B. Nối AC cắt MN tại E. 1. Chứng minh tứ giác EIBC nội tiếp. 2. Chứng minh AM2 = AE.AC. 3. Tìm bán kính đường tròn ngoại tiếp tam giác MCE khi NK nhỏ nhất, với K là tâm đường tròn ngoại tiếp tam giác MCE.
Đề KSCL Toán vào 10 THPT năm 2023 trường THCS Nguyễn Đăng Đạo - Bắc Ninh
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi khảo sát chất lượng môn Toán ôn thi vào lớp 10 THPT năm học 2022 – 2023 trường THCS Nguyễn Đăng Đạo, thành phố Bắc Ninh, tỉnh Bắc Ninh; đề thi gồm 40 câu trắc nghiệm (04 điểm – 50 phút) và 04 câu tự luận (06 điểm – 70 phút); kỳ thi được diễn ra vào ngày 15 tháng 02 năm 2023. Trích dẫn Đề KSCL Toán vào 10 THPT năm 2023 trường THCS Nguyễn Đăng Đạo – Bắc Ninh : + Khẳng định nào sau đây đúng? A. Góc nội tiếp là góc có đỉnh trùng với tâm của đường tròn. B. Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh là hai dây của đường tròn. C. Góc nội tiệp là góc có đỉnh nằm trên đường tròn và có cạnh chứa dây của đường tròn. D. Góc nội tiếp là góc có đỉnh nằm trên đường tròn và hai cạnh chứa hai dây của đường tròn. + Một người đang ở trên tầng thượng của một tòa nhà quan sát con đường chạy thẳng đến chân tòa nhà (hình vẽ minh họa phía dưới). Anh ta nhìn thấy một người điều khiển chiếc xe máy đi về phía tòa nhà với phương nhìn tạo với phương nằm ngang một góc bằng 30°. Sau 6 phút, người quan sát vẫn nhìn thấy người điểu khiển chiếc xe máy, nhưng phương nhìn tạo với phương nằm ngang một góc bằng 60°. Hỏi sau bao nhiêu phút nữa thì xe mày sẽ chạy đến chân tòa nhà? Cho biết vận tốc xe máy không đổi. + Bạn Nam mua hai món hàng và phải trả tổng cộng 480000 đồng, trong đó đã tính cả 40000 đồng thuế giá trị gia tăng (viết tắt là thuế VAT). Biết rằng thuế VAT đối với mặt hàng thứ nhất là 10%, thuế VAT đối với mặt hàng thứ hai là 8%. Hỏi bạn Nam đã mua mỗi món hàng với giá là bao nhiêu tiền?
Đề KSCL Toán vào lớp 10 năm 2022 - 2023 phòng GDĐT Thọ Xuân - Thanh Hoá
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán ôn thi tuyển sinh vào lớp 10 THPT năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Thọ Xuân, tỉnh Thanh Hoá; kỳ thi được diễn ra vào ngày 02 tháng 06 năm 2022; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề KSCL Toán vào lớp 10 năm 2022 – 2023 phòng GD&ĐT Thọ Xuân – Thanh Hoá : + Cho nửa đường tròn tâm O, bán kính R, đường kính AB, I là điểm cố định thuộc đoạn thẳng OB. Vẽ đường thẳng d vuông góc với AB tại I, d cắt nửa đường tròn (O) tại K. Lấy điểm M bất kỳ thuộc cung nhỏ BK, tia BM cắt đường thẳng d tại điểm C, đoạn thẳng AM cắt đường thẳng d tại điểm N, AC cắt nửa đường tròn (O) tại D. a) Chứng minh tứ giác BMNI là tứ giác nội tiếp b) Chứng minh ba điểm B, N, D thẳng hàng và tính AD.AC + BM.BC theo R c) Gọi O’ là tâm đường tròn ngoại tiếp tam giác ANC. Chứng minh O’ luôn nằm trên một đường thẳng cố định khi M di chuyển trên cung nhỏ KB. + Trong hệ trục tọa độ Oxy, cho parabol (P): y = 2×2 và đường thẳng (d): y = (m + 1)x – m + 3 (m là tham số ) a) Chứng minh rằng đường thẳng (d) luôn cắt parabol (P) tại hai điểm A và B phân biệt với mọi giá trị của m b) Gọi tọa độ điểm A và điểm B là A (x1; y1) và B(x2; y2). Tìm m để 2y1 + 2y2 = (m + 1)x2 + 2 + 8. + Cho 3 số thực dương x, y, z thỏa mãn: 2 2 2 1 1 1 1 x y z. Tìm giá trị nhỏ nhất của biểu thức: 2 2 2 2 2 2 2 2 2 2 2 2 y z z x x y P x y z y z x z x y.