Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ứng dụng của tích phân trong hình học

Tài liệu gồm 376 trang được biên soạn bởi quý thầy, cô giáo nhóm Geogebra – Nguyễn Chín Em, tuyển tập 647 câu hỏi và bài toán trắc nghiệm chủ đề ứng dụng tích phân trong hình học, có đáp án và lời giải chi tiết, giúp học sinh tham khảo trong quá trình tự học chương trình Giải tích 12 chương 3: Nguyên hàm, tích phân và ứng dụng. Khái quát nội dung tài liệu ứng dụng của tích phân trong hình học: Phần 1 . Câu hỏi và bài tập mức độ nhận biết: 100 câu. + Cho hình phẳng D giới hạn bởi đường cong y = e mũ x, trục hoành và các đường thẳng x = 0, x = 1. Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích V bằng bao nhiêu? + Tính thể tích khối tròn xoay do hình phẳng giới hạn bởi các đường y = cos x,  y = 0, x = 0, x = π quay xung quanh Ox. Phần 2 . Câu hỏi và bài tập mức độ thông hiểu: 199 câu. + Diện tích hình phẳng giới hạn bởi các đường y = √(1 + ln x)/x, y = 0, x = 1, x = e là S = a√2 + b. Khi đó tính giá trị a^2 + b^2? + Tính diện tích hình phẳng giới hạn bởi đồ thị (P): y = x^2 − 4x + 5 và các tiếp tuyến với (P) tại A(1;2) và B(4;5). [ads] Phần 3 . Câu hỏi và bài tập mức độ vận dụng thấp: 199 câu. + Diện tích hình phẳng nằm trong góc phần tư thứ nhất, giới hạn bởi các đường thẳng y = 8x, y = x và đồ thị hàm số y = x^3 là phân số tối giản. Khi đó a + b bằng? + Bác Năm làm một cái cửa nhà hình parabol có chiều cao từ mặt đất đến đỉnh là 2,25 mét, chiều rộng tiếp giáp với mặt đất là 3 mét. Giá thuê mỗi mét vuông là 1500000 đồng. Vậy số tiền bác Năm phải trả là? Phần 4 . Câu hỏi và bài tập mức độ vận dụng cao: 100 câu. + Cho hàm số y = f(x) có đồ thị hàm số y = f'(x) cắt trục Ox tại ba điểm có hoành độ a < b < c như hình vẽ. Xét 4  mệnh đề sau:  (1): f(c) < f(a) < f(b). (2): f(c) > f(b) > f(a). (3): f(a) > f(b) > f(c). (4): f(a) > f(b). Trong các mệnh đề trên có bao nhiêu mệnh đề đúng? + Cho số dương a thỏa mãn hình phẳng giới hạn bởi các đường parabol y = ax2 − 2 và y = 4 − 2ax2 có diện tích bằng 16. Tìm giá trị của a. Phần 5 . Ứng dụng tích phân giải bài toán thực tế: 49 câu. + Một quả trứng có hình dạng khối tròn xoay, thiết diện qua trục của nó là hình elip có độ dài trục lớn bằng 6, độ dài trục bé bằng 4. Tính thể tích quả trứng đó. + Sân chơi cho trẻ em hình chữ nhật có chiều dài 100 m và chiều rộng là 60 m người ta làm một con đường nằm trong sân (như hình vẽ).

Nguồn: toanmath.com

Đọc Sách

Các phương pháp xác định nguyên hàm - Lê Bá Bảo
Tài liệu gồm 41 trang hướng dẫn các phương pháp tìm nguyên hàm của hàm số với các ví dụ minh họa và bài tập trắc nghiệm tự luyện. I – Tổng quan lý thuyết 1. Nguyên hàm 2. Tính chất của nguyên hàm 3. Sự tồn tại của nguyên hàm 4. Bảng nguyên hàm của một số hàm số sơ cấp II – Phương pháp tính nguyên hàm [ads] III – Bài tập tự luận minh họa + Một số phép biến đổi cơ bản + Nguyên hàm các hàm số phân thức + Nguyên hàm từng phần + Đổi biến + Dùng vi phân IV – Bài tập trắc nghiệm minh họa V – Bài tập trắc nghiệm tự luyện
109 bài toán trắc nghiệm nguyên hàm - Trần Công Diêu
Tài liệu gồm 24 trang với 109 bài tập trắc nghiệm nguyên hàm do thầy Trần Công Diêu sưu tầm và biên soạn. Trích dẫn tài liệu : + Mệnh dề nào sau đây sai? A. Nếu F(x) là một nguyên hàm của f(x) trên (a; b) và C là hằng số thì ∫f(x) = F(x) + C B. Mọi hàm số liên tục trên (a; b) đều có nguyên hàm trên (a; b) C. F(x) là một nguyên hàm của f(x) trên (a; b) ⇔ F'(x) = f(x) ∀x ∈ (a; b) D. (∫f(x)dx)’ = f(x) + Xét hai khẳng định sau: (I) Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có đạo hàm trên đoạn đó (II) Mọi hàm số f(x) liên tục trên đoạn [a; b] đều có nguyên hàm trên đoạn đó [ads] Trong hai khẳng định trên: A. Chỉ có (I) đúng B. Chỉ có (II) đúng C. Cả hai đều đúng D. Cả hai đều sai + Hàm số f(x) có nguyên hàm trên K nếu: A. f(x) xác định trên K B. f(x) có giá trị lớn nhất trên K C. f(x) có giá trị nhỏ nhất trên K D. f(x) liên tục trên K
Chuyên đề các phương pháp tính tích phân - Nguyễn Duy Khôi
Ngày nay phép tính vi tích phân chiếm một vị trí hết sức quan trọng trong Toán học, tích phân được ứng dụng rộng rãi như để tính diện tích hình phẳng, thể tích khối tròn xoay, nó còn là đối tượng nghiên cứu của giải tích, là nền tảng cho lý thuyết hàm, lý thuyết phương trình vi phân, phương trình đạo hàm riêng… Ngoài ra phép tính tích phân còn được ứng dụng rộng rãi trong Xác suất, Thống kê, Vật lý, Cơ học, Thiên văn học, Y học … Phép tính tích phân được bắt đầu giới thiệu cho các em học sinh ở lớp 12, tiếp theo được phổ biến trong tất cả các trường đại học cho khối sinh viên năm thứ nhất và năm thứ hai trong chương trình học đại cương. Hơn nữa trong các kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học phép tính tích phân hầu như luôn có trong các đề thi môn Toán của khối A, khối B và cả khối D. Bên cạnh đó, phép tính tích phân cũng là một trong những nội dung để thi tuyển sinh đầu vào hệ Thạc sĩ và nghiên cứu sinh. [ads] Với tầm quan trọng của phép tính tích phân, chính vì thế mà tôi viết một số kinh nghiệm giảng dạy tính tích phân của khối 12 với chuyên đề “TÍNH TÍCH PHÂN BẰNG PHƯƠNG PHÁP PHÂN TÍCH – ĐỔI BIẾN SỐ VÀ TỪNG PHẦN” để phần nào củng cố, nâng cao cho các em học sinh khối 12 để các em đạt kết quả cao trong kỳ thi Tốt nghiệp THPT và kỳ thi Tuyển sinh đại học và giúp cho các em có nền tảng trong những năm học đại cương của đại học. Trong phần nội dung chuyên đề dưới đây, tôi xin được nêu ra một số bài tập minh họa cơ bản tính tích phân chủ yếu áp dụng phương pháp phân tích, phương pháp đổi biến số, phương pháp tích phân từng phần. Các bài tập đề nghị là các đề thi Tốt nghiệp THPT và đề thi tuyển sinh đại học Cao đẳng của các năm để các em học sinh rèn luyện kỹ năng tính tích phân và phần cuối của chuyên đề là một số câu hỏi trắc nghiệm tích phân. Tuy nhiên với kinh nghiệm còn hạn chế nên dù có nhiều cố gắng nhưng khi trình bày chuyên đề này sẽ không tránh khỏi những thiếu sót, rất mong được sự góp ý chân tình của quý Thầy Cô trong Hội đồng bộ môn Toán Sở Giáo dục và đào tạo tỉnh Đồng Nai. Nhân dịp này tôi xin cảm ơn Ban lãnh đạo nhà trường tạo điều kiện tốt cho tôi và cảm ơn quý thầy cô trong tổ Toán trường Nam Hà, các đồng nghiệp, bạn bè đã đóng góp ý kiến cho tôi hoàn thành chuyên đề này. Tôi xin chân thành cám ơn.
50 bài trắc nghiệm tích phân cơ bản thường gặp - Phạm Ngọc Tính
Tuyển tập 50 bài toán trắc nghiệm chuyên đề tích phân cơ bản và thường gặp trong các đề thi trắc nghiệm do thầy Phạm Ngọc Tính biên soạn. Tài liệu gồm 16 trang có đáp án. Trích dẫn tài liệu : + Hãy chọn kết luận sai: A. d(…) = 2xdx chỗ trống là x^2 + C B. d(…) = 3xdx thì chỗ trống là x^4 + C C. d(…) = cosxdx thì chỗ trống bằng sinx + C D. d(…) = (1 + tan2x)dx thì chỗ trống là tanx + C [ads] + F(x) là một nguyên hàm của hàm số y = cos2x/[(cosx)^2.(sinx)^2]. Nếu F(π/4) = 0 thì ∫cos2x/[(cosx)^2.(sinx)^2]dx bằng: A. tanx + cotx + 2 B. tanx + cotx – 2 C. -tanx – cotx + 2 D. -tanx – cotx – 2 + F(x) là một nguyên hàm của hàm số y = tanx. Nếu F(π/3) = ln 8 thì tanxdx bằng: A. ln|cosx| + ln 3 B. -ln|cosx| + ln 4 C. ln|cosx| – ln 3 D. -ln|cosx| + ln 4