Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Quảng Ngãi

Nội dung Đề học sinh giỏi lớp 7 môn Toán năm 2020 2021 phòng GD ĐT thành phố Quảng Ngãi Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi Toán lớp 7 năm 2020 - 2021 Đề thi Học sinh giỏi Toán lớp 7 năm 2020 - 2021 Chào đón quý thầy cô và các em học sinh lớp 7, Sytu xin giới thiệu đến đề thi chọn Học sinh giỏi môn Toán lớp 7 trong năm học 2020 - 2021 do Phòng Giáo dục và Đào tạo thành phố Quảng Ngãi, tỉnh Quảng Ngãi thực hiện. Đề thi này là cơ hội cho các em học sinh thể hiện năng lực và kiến thức Toán của mình thông qua các bài tập đa dạng và thú vị. Hy vọng các em sẽ tự tin và thành công khi tham gia vào bài thi này.

Nguồn: sytu.vn

Đọc Sách

Đề học sinh giỏi huyện Toán 7 năm 2016 - 2017 phòng GDĐT Kim Thành - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương; đề thi có đáp án và lời giải chi tiết. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2016 – 2017 phòng GD&ĐT Kim Thành – Hải Dương : + Cho tam giác ABC có ba góc nhọn (AB < AC). Vẽ về phía ngoài tam giác ABC các tam giác đều ABD và ACE. Gọi I là giao của CD và BE, K là giao của AB và DC. a) Chứng minh rằng: ADC = ABE. b) Gọi M và N lần lượt là trung điểm của CD và BE. Chứng minh rằng AMN đều. c) Chứng minh rằng IA là phân giác của góc DIE. + Chứng minh rằng với n nguyên dương thì 3n+2 – 2n+2 + 3n – 2n chia hết cho 10. + Tìm các cặp số nguyên (x;y) thỏa mãn: x + 2y = 3xy + 3.
Đề học sinh giỏi Toán 7 năm 2015 - 2016 phòng GDĐT Sơn Dương - Tuyên Quang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang; đề thi có đáp số + lời giải + thang điểm. Trích dẫn đề học sinh giỏi Toán 7 năm 2015 – 2016 phòng GD&ĐT Sơn Dương – Tuyên Quang : + Ba lớp 7A, 7B, 7C cùng mua một số gói tăm từ thiện, lúc đầu số gói tăm dự định chia cho ba lớp tỉ lệ với 5,6,7 nhưng sau đó chia theo tỉ lệ 4,5,6 nên có một lớp nhận nhiều hơn dự định 4 gói. Tính tổng số gói tăm mà ba lớp đã mua. + Cho tam giác ABC có AB < AC. Trên tia đối của tia CA lấy điểm D sao cho CD = AB. Gọi P, Q là trung điểm của AD, BC và I là giao điểm các đường vuông góc với AD và BC tại P và Q. a) Chứng minh ∆AIB = ∆DIC. b) Chứng minh AI là tia phân giác của góc BAC. c) Kẻ IE vuông góc với AB, chứng minh AD AE. + Cho a, b, c là ba số thực khác 0, thoả mãn. Hãy tính giá trị của biểu thức.
Đề học sinh giỏi huyện Toán 7 năm 2015 - 2016 phòng GDĐT Vũ Thư - Thái Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Vũ Thư – Thái Bình; đề thi có đáp án + lời giải chi tiết + hướng dẫn chấm điểm. Trích dẫn đề học sinh giỏi huyện Toán 7 năm 2015 – 2016 phòng GD&ĐT Vũ Thư – Thái Bình : + Cho tam giác ABC nhọn; vẽ về phía ngoài tam giác ABC các tam giác vuông cân tại A là tam giác ABD và tam giác ACE. a) Chứng minh DC = BE và DC BE. b) Gọi H là chân đường vuông góc kẻ từ A đến ED và M là trung điểm của đoạn thẳng BC. Chứng minh A, M, H thẳng hàng. + Cho tam giác ABC vuông tại A có AB= 3cm; AC= 4cm. Điểm I nằm trong tam giác và cách đều ba cạnh của tam giác ABC. Gọi M là chân đường vuông góc kẻ từ điểm I đến BC. Tính MB. + Tìm hình chữ nhật có kích thước các cạnh là số nguyên sao cho số đo diện tích bằng số đo chu vi.
Đề khảo sát HSG Toán 7 năm 2015 - 2016 phòng GDĐT Ý Yên - Nam Định
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 7 đề khảo sát HSG Toán 7 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm. Trích dẫn đề khảo sát HSG Toán 7 năm 2015 – 2016 phòng GD&ĐT Ý Yên – Nam Định : + Cho tam giác ABC đều. Trên cạnh AB lấy điểm D sao cho BD AB. Tại D kẻ đường vuông góc với AB cắt cạnh BC tại E. Tại E kẻ đường vuông góc với BC cắt AC tại F. 1) Chứng minh DF AC. Biết trong tam giác vuông cạnh đối diện với góc 0 30 thì bằng nửa cạnh huyền. 2) Chứng minh tam giác DEF đều. 3) Gọi G là trọng tâm của tam giác DEF. Chứng minh GA = GB = GC. + Cho đa thức Q(x) = ax bx cx d với a, b, c, d. Biết Q(x) chia hết cho 3 với mọi. Chứng tỏ các hệ số a, b, c, d đều chia hết cho 3. + Số M được chia thành ba phần tỉ lệ nghịch với 3; 5; 6. Biết rằng tổng các lập phương của ba phần đó là 10728. Hãy tìm số M.