Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Hà Đông Hà Nội

Nội dung Đề khảo sát chất lượng lớp 9 môn Toán năm 2021 2022 phòng GD ĐT Hà Đông Hà Nội Bản PDF - Nội dung bài viết Đề khảo sát chất lượng lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Hà Đông Hà Nội Đề khảo sát chất lượng lớp 9 môn Toán năm 2021-2022 phòng GD ĐT Hà Đông Hà Nội Sytu trân trọng giới thiệu đến quý thầy cô và các em học sinh lớp 9 đề khảo sát chất lượng môn Toán năm học 2021-2022 của phòng Giáo dục và Đào tạo quận Hà Đông, thành phố Hà Nội. Đề khảo sát bao gồm các câu hỏi sau: 1. Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một lớp học có 40 học sinh, trong đó số học sinh nam nhiều hơn số học sinh nữ. Trong buổi hoạt động ngoại khóa, cô giáo đưa cả lớp 365,000 đồng để mỗi bạn nam mua một lon CocaCola giá 10,000 đồng/lon, mỗi bạn nữ mua một bánh phô mai giá 8,000 đồng/cái và được căng tin trả lại 3,000 đồng. Hỏi lớp có bao nhiêu học sinh nam và bao nhiêu học sinh nữ? 2. Một chiếc máy bay bay lên. Đường bay lên tạo với phương nằm ngang một góc 25°. Sau 5 phút máy bay bay lên đạt được độ cao là 10,565m. Hỏi vận tốc trung bình của máy bay là bao nhiêu km/h? 3. Cho parabol (P): y = x^2 và đường thẳng (d): y = 2mx + 3. a) Chứng minh (d) luôn cắt (P) tại hai điểm phân biệt với mọi giá trị của m. b) Gọi x1 và x2 là hoành độ giao điểm của (d) và (P). Tìm m để |x1| + 3|x2| = 6. Hy vọng đề khảo sát sẽ giúp các em học sinh ôn tập và củng cố kiến thức môn Toán hiệu quả. Chúc các em thành công!

Nguồn: sytu.vn

Đọc Sách

Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường chuyên Hà Nội - Amsterdam
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 năm học 2021 – 2022 trường THPT chuyên Hà Nội – Amsterdam. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường chuyên Hà Nội – Amsterdam : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Một đội xe dự định dùng một số xe cùng loại để chở 180 tấn hàng để ủng hộ đồng bào các tỉnh khó khăn để chống dịch Covid. Lúc sắp khởi hành đội được bổ sung thêm 3 xe nữa cùng loại. Nhờ vậy, so với ban đầu, mỗi xe chở ít hơn 2 tấn. Hỏi lúc đầu đội có bao nhiêu xe? Biết khối lượng hàng mỗi xe chở như nhau. + Một bồn nước inox có dạng một hình trụ với đường kính đáy 60cm, chiều cao là 1m. Hỏi bồn nước này đựng đầy được bao nhiêu mét khối nước? (bỏ qua chiều dày của vỏ thùng và lấy pi = 3,14). + Với các số thực không âm a, b, c thỏa mãn ab + bc + ca + abc = 4, tìm giá trị nhỏ nhất của biểu thức P.
Đề kiểm tra Toán 9 đợt 1 năm 2021 - 2022 phòng GDĐT Quảng Trạch - Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng môn Toán 9 đợt 1 năm học 2021 – 2022 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình. Trích dẫn đề kiểm tra Toán 9 đợt 1 năm 2021 – 2022 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho phương trình: x2 + mx + m – 1 = 0 (1) (m là tham số). a) Giải phương trình (1) tại m = 7. b) Chứng tỏ rằng phương trình (1) luôn có nghiệm với mọi giá trị của m. c) Tìm m sao cho phương trình (1) có hai nghiệm x1, x2 là hai số đối nhau. + Cho các số thực dương a, b, c thỏa mãn: (a + 2)(b + 2) + (b + 2)(c + 2) + (c + 2)(a + 2) > (a + 2)(b + 2)(c + 2). Chứng minh rằng: abc < 1. + Cho đường tròn (O) đường kính MN, dây CD vuông góc với MN tại H. Trên đoạn CH lấy điểm I (không trùng với C và H), MI cắt đường tròn (O) tại điểm thứ hai là A. a) Chứng minh tứ giác AIHN nội tiếp trong một đường tròn b) Chứng minh ZMCD = ZMAC c) Chứng minh MC2 = MI.MA d) Gọi P là giao điểm của MA và CN, Q là giao điểm của AD và MN. Chứng minh P là tâm của đường tròn nội tiếp tam giác ACQ.
Đề khảo sát Toán 9 tháng 02 năm 2022 trường THCS Thanh Xuân Trung - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng định kì môn Toán 9 tháng 02 năm học 2021 – 2022 trường THCS Thanh Xuân Trung, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 26 tháng 02 năm 2022. Trích dẫn đề khảo sát Toán 9 tháng 02 năm 2022 trường THCS Thanh Xuân Trung – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Hai tổ của một nhà máy sản xuất khẩu trang lúc đầu trong một ngày sản xuất được 1500 chiếc khẩu trang. Để đáp ứng nhu cầu khẩu trang trong mùa dịch cúm do chủng mới virut Corona gây nên mỗi ngày tổ một vượt mức 75%, tổ hai vượt mức 68%, khi đó cả hai tổ sản xuất được 2583 chiếc khẩu trang. Hỏi ban đầu trong một ngày mỗi tổ sản xuất được bao nhiêu chiếc khẩu trang? + Để đo khoảng cách giữa hai địa điểm A và B ở hai bờ của một con sông, người ta đặt máy đo ở vị trí C sao cho AC vuông góc AB. Biết AC = 20m và ACB = 75° (hình bên). Tính khoảng cách AB (làm tròn đến mét). + Cho đường tròn (O;R) và dây BC cố định. Trên tia đối của tia BC lấy điểm A. Kẻ các tiếp tuyến AM, AN với đường tròn (O) (M và N là các tiếp điểm, N thuộc cung BC nhỏ). Gọi H là trung điểm của dây BC. 1) Chứng minh: Tứ giác AMON và tứ giác AOHN nội tiếp. 2) a) MN cắt AO tại điểm I. Chứng minh: Al. AO = AM2. b) Tia MH cắt đường tròn (O) tại điểm thứ hai D. Giả sử 3 điểm A, B, C cố định, đường tròn (O) di động. Chứng minh: ND // AC và đường thẳng MN luôn đi qua một điểm cố định.
Đề khảo sát chất lượng Toán 9 năm 2021 - 2022 trường THCS Lê Ngọc Hân - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra khảo sát chất lượng Toán 9 năm học 2021 – 2022 trường THCS Lê Ngọc Hân, quận Hai Bà Trưng, thành phố Hà Nội, đề thi có đáp án, lời giải chi tiết và thang chấm điểm; kỳ thi được diễn ra vào ngày 12 tháng 02 năm 2022. Trích dẫn đề khảo sát chất lượng Toán 9 năm 2021 – 2022 trường THCS Lê Ngọc Hân – Hà Nội : + Để chuẩn bị cho công tác phòng chống dịch COVID – 19 khi học sinh quay trở lại trường học trực tiếp, nhà trường dự định mua khẩu trang và dung dịch sát khuẩn với tổng số tiền là 8 triệu đồng. Tuy nhiên, vì cửa hàng có chương trình ưu đãi dành cho trường học, giá khẩu trang giảm 10%, giá dung dịch sát khuẩn giảm 15% nên nhà trường chỉ phải trả 7 triệu đồng. Hỏi số tiền ban đầu dự định để mua khẩu trang là bao nhiêu? + Trong mặt phẳng Oxy, cho đường thẳng (d): y m 1 x 2m m 1 a) Với m = 2, tìm giao điểm của (d) với đường thẳng (d1): y 3x 2 b) Với giá trị nào của m để (d) song song với đường thẳng (d2) y x c) Đường thẳng (d) cắt trục Ox tại điểm B, cắt trục Oy tại điểm A. Tìm m sao cho diện tích tam giác OAB bằng 1 (đvdt). + Cho hai biểu thức: 2 4 2 x x A x và 2 4 2 2 4 x xx B với x x 0 4 1) Tính giá trị của biểu thức A khi x = 9. 2) Chứng minh: 2 x B x. 3) Đặt P AB. So sánh P và 2. 4) Tìm giá trị nguyên dương nhỏ nhất của P.