Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Kim Thành Hải Dương

Nội dung Đề học sinh giỏi lớp 9 môn Toán năm 2023 2024 phòng GD ĐT Kim Thành Hải Dương Bản PDF - Nội dung bài viết Đề thi Học sinh giỏi Toán lớp 9 năm 2023-2024 cấp huyện Đề thi Học sinh giỏi Toán lớp 9 năm 2023-2024 cấp huyện Xin chào quý thầy cô giáo và các em học sinh lớp 9! Hôm nay, Sytu xin giới thiệu đến quý vị đề thi chọn Học sinh giỏi lớp 9 môn Toán cấp huyện năm học 2023-2024 của phòng Giáo dục và Đào tạo huyện Kim Thành, tỉnh Hải Dương. Đề thi bao gồm 5 bài toán tự luận trên 1 trang, thời gian làm bài là 120 phút (không kể thời gian giao đề). Trích dẫn một số bài toán trong đề: Tìm tất cả các cặp số nguyên dương (x;y) sao cho x2 - 3y2 - 2xy - 2x + 14y = 11. Chứng minh rằng nếu n là số nguyên dương thỏa mãn 12n2 + 1 là số nguyên, thì 212n2 + 1 + 2 là số chính phương. Trong tam giác ABC, xác định vị trí của đường thẳng d đi qua I sao cho diện tích tam giác AMN đạt giá trị nhỏ nhất. Đề thi Học sinh giỏi Toán lớp 9 năm 2023-2024 cung cấp các bài toán thú vị và thách thức, giúp các em ôn tập và củng cố kiến thức Toán một cách nhanh nhẹn và sáng tạo. Chúc quý thầy cô và các em học sinh thành công trong việc giải quyết những bài toán khó khăn này!

Nguồn: sytu.vn

Đọc Sách

Đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 - 2022 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi chọn học sinh giỏi tỉnh Toán THCS năm 2021 – 2022 sở GD&ĐT Thanh Hóa; kỳ thi được diễn ra vào Chủ Nhật ngày 26 tháng 12 năm 2021.
Đề thi học sinh giỏi Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Ninh Bình
Đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn đề thi học sinh giỏi Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Ninh Bình : + Cho đường tròn (O) và dây BC cố định (BC không phải là đường kính). Điểm A di động trên cung lớn BC sao cho tam giác ABC là tam giác nhọn. Gọi E là điểm đối xứng của B qua đường thẳng AC và F là điểm đối xứng của C qua đường thẳng AB. Gọi K là giao điểm của hai đường thẳng EC và FB, H là giao điểm của hai đường thẳng BE và CF. a) Chứng minh FAHB và ACKF là các tứ giác nội tiếp. b) Chứng minh KA là phân giác của góc BKC và ba điểm K, O, A thẳng hàng. c) Xác định vị trí của điểm A sao cho tứ giác BKCO có diện tích lớn nhất. + Cho 16 số nguyên dương lớn hơn 1 và nhỏ hơn 2021 đôi một nguyên tố cùng nhau. Chứng minh trong 16 số trên có ít nhất một số là số nguyên tố. + Cho 8045 điểm trên một mặt phẳng sao cho cứ 3 điểm bất kì thì tạo thành một tam giác có diện tích nhỏ hơn 1. Chứng minh rằng luôn có thể có ít nhất 2012 điểm nằm trong tam giác hoặc trên cạnh của một tam giác có diện tích nhỏ hơn 1.
Đề thi HSG Toán 9 năm 2021 - 2022 phòng GDĐT thành phố Vinh - Nghệ An
Đề thi HSG Toán 9 năm 2021 – 2022 phòng GD&ĐT thành phố Vinh – Nghệ An gồm 01 trang với 04 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút (không kể thời gian giao đề).
Đề thi HSG thành phố Toán 9 năm 2021 - 2022 phòng GDĐT Đà Lạt - Lâm Đồng
Đề thi HSG thành phố Toán 9 năm 2021 – 2022 phòng GD&ĐT Đà Lạt – Lâm Đồng gồm 02 trang với 10 bài toán dạng tự luận, thời gian làm bài 150 phút, kỳ thi được diễn ra vào thứ Ba ngày 14 tháng 12 năm 2021.