Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8

Tài liệu gồm 57 trang, hướng dẫn giải các dạng toán chuyên đề giá trị lớn nhất, giá trị nhỏ nhất của biểu thức bồi dưỡng HSG Toán 8, giúp học sinh lớp 8 ôn tập, rèn luyện để chuẩn bị cho kì thi học sinh giỏi môn Toán 8 các cấp. A. Giá trị lớn nhất, giá trị nhỏ nhất của một biểu thức Nếu với mọi giá trị của biến thuộc một khoảng xác định nào đó mà giá trị của biểu thức A luôn luôn lớn hơn hoặc bằng (nhỏ hơn hoặc bằng) một hằng số k và tồn tại một giá trị của biến để A có giá trị bằng k thì k gọi là giá trị nhỏ nhất (giá trị lớn nhất) của biểu thức A ứng với các giá trị của biểu thức thuộc khoảng xác định nói trên. B. Các dạng toán Dạng 1 : Tìm GTLN – GTNN của tam thức bậc hai ax2 + bx + c. Phương pháp: Áp dụng hằng đẳng thức số 1 và số 2. Dạng 2 : Tìm GTLN – GTNN của đa thức có bậc cao hơn 2. Phương pháp: Ta đưa về dạng tổng bình phương. Dạng 3 : Đa thức có từ 2 biến trở lên. Phương pháp: Đa số các biểu thức có dạng 2 2 F x y ax by cxy dx ey h a b c. Ta đưa dần các biến vào trong hằng đẳng thức 2 2 2 a ab b a b như sau 2 2 F x y mK x y nG y r hoặc 2 2 F x y mK x y nH x r. Trong đó G y H x là biểu thức bậc nhất đối với biến, còn K x y px qy k cũng là biểu thức bậc nhất đối với cả hai biến x và y. Cụ thể: Ta biến đổi (1) để chuyển về dạng (2) như sau với 2 a ac b 0 4 0. Nếu m > 0, n > 0 thì ta tìm được giá trị nhỏ nhất. Nếu m < 0, n < 0 thì ta tìm được giá trị lớn nhất. Dễ thấy rằng luôn tồn tại (x;y) để có dấu của đẳng thức, như vậy ta sẽ tìm được cực trị của đa thức đã cho. Trong cả hai trường hợp trên: Nếu r = 0 thì phương trình F(x;y) = 0 có nghiệm. Nếu F x y r thì không có nào thỏa mãn F(x;y) = 0. Nếu a ac b r F x y phân tích được tích của hai nhân tử, giúp ta giải được các bài toán khác. Dạng 4 : Tìm GTLN – GTNN của biểu thức có quan hệ ràng buộc giữa các biến. Phương pháp: – Dồn biến từ điều kiền rồi thay vào biểu thức. – Biến đổi biểu thức thành các thành phần có chứa điều kiện để thay thế. – Sử dụng thêm một số bất đẳng thức phụ. Dạng 5 : Phương pháp đổi biến số. Phương pháp: – Phân tích thành các biểu thức tương đồng để đặt ẩn phụ. – Sử dụng phương pháp nhóm hợp lý làm xuất hiện nhân tử để đặt ẩn phụ. – Sử dụng các hằng đẳng thức. Dạng 6 : Sử dụng bất đẳng thức có chứa dấu giá trị tuyệt đối. Dạng 7 : Dạng phân thức. A. Phân thức có tử là hằng số, mẫu là tam thức bậc hai. Phương pháp: Biểu thức dạng này đạt giá trị nhỏ nhất khi mẫu đạt giá trị lớn nhất. B. Phân thức có mẫu là bình phương của một nhị thức. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. C. Tìm GTLN – GTNN của phân thức có dạng khác. Cách 1: Tách tử thành các nhóm có nhân tử chung với mẫu. Cách 2: Viết biểu thức A thành tổng của một số với một phân thức không âm. 1. Bậc của tử nhỏ hơn bậc của mẫu. 2. Bậc của tử bằng bậc của mẫu.

Nguồn: toanmath.com

Đọc Sách

Chuyên đề tính chất đường phân giác của tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề tính chất đường phân giác của tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CƠ BẢN 1. Định lý: Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn thẳng tỉ lệ với hai cạnh kề hai đoạn ấy. 2. Chú ý: + Định lý vẫn đúng với đối với đường phân giác góc ngoài của tam giác. + Các định lý trên có định lý đảo. II. BÀI TẬP MINH HỌA A. DẠNG BÀI CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng và sử dụng kĩ thuật đại số hóa hình học. + Áp dụng định lí Py-ta-go. DẠNG 2.Tính tỉ số độ dài, tỉ số diện tích hai tam giác. + Áp dụng tính chất đường phân giác, lập tỉ lệ thức giữa các đoạn thẳng. + Sử dụng kĩ thuật đại số hóa hình học. Công thức và kết quả thu được từ công thức tính diện tích tam giác. B. DẠNG BÀI NÂNG CAO
Chuyên đề định lí đảo và hệ quả của định lí Ta-lét
Tài liệu gồm 14 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí đảo và hệ quả của định lí Ta-lét, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ 1. Định lí Ta-lét đảo: Nếu một đường thẳng cắt hai cạnh của một tam giác và định ra trên hai cạnh này những đoạn thẳng tương ứng tỉ lệ thì đường thẳng đó song song với cạnh còn lại của tam giác. 2. Hệ quả của định lí Ta-lét: Nếu một đường thẳng cắt hai cạnh của một tam giác và song song với cạnh còn lại thì nó tạo thành một tam giác mới có ba cạnh tỉ lệ với ba cạnh của tam giác đã cho. II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính độ dài đoạn thẳng. Chia đoạn thẳng cho trước thành các phần bằng nhau. 1. Tính độ dài đoạn thẳng: + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Thay số vào hệ thức rồi giải phương trình. 2. Chia đoạn thẳng cho trước thành các phần bằng nhau cách sử dụng hệ quả của định lí Ta-lét hoặc tính chất của đường thẳng song song cách đều. DẠNG 2. Chứng minh hệ thức hình học. + Xác định đường thẳng song song với một cạnh của tam giác. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức của các đoạn thẳng. + Sử dụng các tính chất của tỉ lệ thức hoặc cộng hay nhân theo vế các đẳng thức hình học. DẠNG 3. Chứng minh hai đường thẳng song song. + Sử dụng định lí Ta-lét, lập tỉ lệ thức giữa các đoạn thẳng. + Áp dụng định lí Ta-lét đảo, kết luận hai đường thẳng song song. DẠNG 4. Vẽ thêm đường thẳng song song để chứng minh hệ thức hình học, tính tỉ số hai đoạn thẳng. + Vẽ thêm đường thẳng song song. + Áp dụng hệ quả của định lí Ta-lét để lập tỉ lệ thức giữa các đoạn thẳng. + Biến đổi tỉ lệ thức. B. DẠNG BÀI NÂNG CAO TỔNG HỢP TALET VÀ LIÊN QUAN
Chuyên đề định lí Ta-lét trong tam giác
Tài liệu gồm 11 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề định lí Ta-lét trong tam giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 3: Tam giác đồng dạng. I. KIẾN THỨC CẦN NHỚ II. BÀI TẬP MINH HỌA A. CÁC DẠNG TOÁN CƠ BẢN DẠNG 1. Tính tỉ số hai đoạn thẳng. Chia đoạn thẳng theo tỉ số cho trước. 1. Sử dụng định nghĩa tỉ số của hai đoạn thẳng. 2. Một điểm C thuộc đoạn thẳng AB (hoặc đường thẳng AB), được gọi là chia đoạn thẳng AB theo tỉ số m/n khác 1 (m, n là các số dương), nếu ta có: CA/CB =m/n. 3. Sử dụng kĩ thuật đại số hóa hình học. 4. Lập tỉ lệ thức giữa các đoạn thẳng tỉ lệ rồi áp dụng tính chất của dãy tỉ số bằng nhau. DẠNG 2.Tính độ dài đoạn thẳng, dựng đoạn thẳng tỉ lệ thứ tư. 1. Tính độ dài đoạn thẳng: + Áp dụng định lí Ta-lét để lập hệ thức của các đoạn thẳng tỉ lệ. + Xác định đường thẳng song song với một cạnh của tam giác. + Thay số vào hệ thức rồi giải phương trình. 2. Trong bốn đoạn thẳng tỉ lệ, dựng đoạn thẳng thứ tự khi biết độ dài của ba đoạn kia: + Đặt ba đoạn thẳng trên hai cạnh của một góc. + Dựng đường thẳng song song để xác định đoạn thẳng thứ tư. DẠNG 3. Chứng minh các hệ thức hình học. 1. Xác định đường thẳng song song với một cạnh của tam giác. 2. Áp dụng định lí Ta-lét để lập hệ thức của các đoạn thẳng tỉ lệ. 3. Sử dụng các tính chất của tỉ lệ thức hoặc cộng theo vế các đẳng thức hình học. DẠNG 4. Vẽ thêm đường thẳng song song để tính tỉ số hai đoạn thẳng. 1. Vẽ thêm đường thẳng song song. 2. Sử dụng kĩ thuật đại số hóa hình học. 3. Áp dụng định lí Ta-lét. B. PHIẾU BÀI TỰ LUYỆN DẠNG BÀI CƠ BẢN
Chuyên đề diện tích đa giác
Tài liệu gồm 06 trang, tóm tắt lý thuyết trọng tâm cần đạt, phân dạng và hướng dẫn giải các dạng toán, tuyển chọn các bài tập từ cơ bản đến nâng cao chuyên đề diện tích đa giác, có đáp án và lời giải chi tiết, hỗ trợ học sinh trong quá trình học tập chương trình Hình học 8 chương 2: Đa giác, diện tích đa giác. I. TÓM TẮT LÝ THUYẾT Để tính diện tích đa giác, ta thường chia đa giác đó thành các tam giác, các tứ giác tính được diện tích rồi tính tổng các diện tích đó; hoặc tạo ra một đa giác nào đó có chứa đa giác ấy rồi tính hiệu các diện tích. II. BÀI TẬP VÀ CÁC DẠNG TOÁN A. CÁC DẠNG BÀI MINH HỌA Dạng 1. Tính diện tích đa giác. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 2. Tính diện tích của đa giác bất kì. Phương pháp giải: Đưa về tính tổng các diện tích hoặc hiệu các diện tích. Dạng 3. Dựng tam giác có diện tích bằng diện tích một đa giác. Phương pháp giải: Thường kẻ đường thẳng song song với một đường thẳng cho trước để tạo ra một tam giác mới có diện tích bằng diện tích một tam giác cho trước. B. PHIẾU BÀI TỰ LUYỆN