Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Chuyên đề giới hạn của dãy số bồi dưỡng học sinh giỏi Toán THPT

Tài liệu gồm 51 trang, được biên soạn bởi tác giả Cao Hoàng Hạ (Giáo viên trường THPT số 2 An Nhơn, tỉnh Bình Định), hướng dẫn một số phương pháp tìm giới hạn của dãy số, bồi dưỡng học sinh giỏi Toán THPT. Trong kỳ thi học sinh giỏi môn Toán cấp tỉnh và cấp quốc gia, bài toán tìm giới hạn của dãy số và các bài toán liên quan đến dãy số thường xuyên xuất hiện và là một trong những bài toán cơ bản của đề thi. Việc tạo cho học sinh một cách nhìn tổng quát cho bài toán tìm giới hạn của dãy số là rất quan trọng, từ đó giúp các em có tư duy rộng hơn trong việc đánh giá tính chất của một dãy số, và lựa chọn phương pháp thích hợp nhất để tìm giới hạn của một dãy số. Dĩ nhiên mỗi phương pháp có ưu thế riêng cho việc giải quyết một lớp các dãy số cụ thể, cũng có những dãy số có thể giải bằng nhiều cách khác nhau. Ở đây, trong chuyên đề này, tác giả muốn đưa ra một số phương pháp cơ bản để nhận dạng và tìm giới hạn của dãy số, bên cạnh đó nhấn mạnh đến cách nhìn tổng quát, liệu có thể giải bài toán theo nhiều cách hay không? Và có thể tổng quát để tạo ra các dãy số mới tương tự như thế nào? MỤC LỤC : Một số phương pháp tìm giới hạn của dãy số. I. Sử dụng định lý Weierstrass để tìm giới hạn dãy số 6. II. Phương pháp so sánh dãy số 14. III. Phương pháp ước lượng để tìm giới hạn một số dãy số đặc biệt 26. IV. Định lý lagrange và dãy số sinh bởi nghiệm của phương trình 34. V. Xác định công thức số hạng tổng quát từ hệ thức truy hồi và tìm giới hạn 43.

Nguồn: toanmath.com

Đọc Sách

Các dạng toán giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục
Tài liệu gồm 124 trang được tổng hợp bởi thầy Nguyễn Bảo Vương, phân dạng và chọn lọc các bài toán trắc nghiệm về các chủ đề: giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục trong chương trình Đại số và Giải tích 11 chương IV; các câu hỏi và bài toán đều có đáp án và lời giải chi tiết. Khái quát nội dung tài liệu các dạng toán giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục: Chủ đề 1 . Giới hạn dãy số Phần A . Câu hỏi và bài tập Dạng 0. Câu hỏi lý thuyết. Dạng 1. Dãy số dạng phân thức. + Phân thức bậc tử bé hơn bậc mẫu. + Phân thức bậc tử bằng bậc mẫu. + Phân thức bậc tử lớn hơn bậc mẫu. + Phân thức chứa căn. Dạng 2. Dãy số chứa căn thức. Dạng 3. Dãy số chứa lũy thừa. Dạng 4. Tổng cấp số nhân lùi vô hạng. Dạng 5. Một số bài toán khác. Phần B . Lời giải tham khảo Dạng 0. Câu hỏi lý thuyết. Dạng 1. Dãy số dạng phân thức. + Phân thức bậc tử bé hơn bậc mẫu. + Phân thức bậc tử bằng bậc mẫu. + Phân thức bậc tử lớn hơn bậc mẫu. + Phân thức chứa căn. Dạng 2. Dãy số chứa căn thức. Dạng 3. Dãy số chứa lũy thừa. Dạng 4. Tổng cấp số nhân lùi vô hạng. Dạng 5. Một số bài toán khác. Chủ đề 2 . Giới hạn hàm số Phần A . Câu hỏi và bài tập Dạng 1. Giới hạn hữu hạn. Dạng 2. Giới hạn một bên. Dạng 3. Giới hạn tại vô cực. Dạng 4. Giới hạn vô định. + Dạng 0/0: Không chứa dấu căn thức và có chứa dấu căn thức. + Dạng ∞ − ∞ (vô cùng trừ vô cùng). Phần B . Lời giải tham khảo Dạng 1. Giới hạn hữu hạn. Dạng 2. Giới hạn một bên. Dạng 3. Giới hạn tại vô cực. Dạng 4. Giới hạn vô định. + Dạng 0/0: Không chứa dấu căn thức và có chứa dấu căn thức. + Dạng ∞ − ∞ (vô cùng trừ vô cùng). [ads] Chủ đề 3 . Hàm số liên tục Phần A . Câu hỏi và bài tập Dạng 1. Câu hỏi lý thuyết. Dạng 2. Liên tục tại một điểm. + Xét tính liên tục tại điểm của hàm số. + Điểm gián đoạn của hàm số. + Bài toán chứa tham số. Dạng 3. Liên tục trên khoảng. + Xét tính liên tục trên khoảng của hàm số. + Bài toán chứa tham số. Dạng 4. Chứng minh phương trình có nghiệm. Phần B . Lời giải tham khảo Dạng 1. Câu hỏi lý thuyết. Dạng 2. Liên tục tại một điểm. + Xét tính liên tục tại điểm của hàm số. + Điểm gián đoạn của hàm số. + Bài toán chứa tham số. Dạng 3. Liên tục trên khoảng. + Xét tính liên tục trên khoảng của hàm số. + Bài toán chứa tham số. Dạng 4. Chứng minh phương trình có nghiệm.
Lý thuyết và bài tập chuyên đề giới hạn - Lư Sĩ Pháp
giới thiệu đến các em học sinh lớp 11 tài liệu lý thuyết và bài tập chuyên đề giới hạn do thầy Lư Sĩ Pháp biên soạn, tài liệu gồm 78 trang tóm tắt lý thuyết chuyên đề giới hạn và tuyển chọn bài tập tự luận, trắc nghiệm giới hạn dãy số, giới hạn hàm số và hàm số liên tục có đáp án và lời giải chi tiết giúp học sinh học tốt chương trình Đại số và Giải tích 11 chương 4. Nội dung tài liệu được chia thành ba phần: Phần 1. Tóm tắt lý thuyết giới hạn dãy số, giới hạn hàm số, hàm số liên tục và các kiến thức liên quan cần nắm ở mỗi bài học. Phần 2. Bài tập tự luận giới hạn có hướng dẫn giải và bài tập tự luyện. Phần 3. Phần bài tập trắc nghiệm giới hạn đủ dạng và có đáp án. [ads] Khái quát nội dung tài liệu lý thuyết và bài tập giới hạn – Lư Sĩ Pháp: PHẦN I . LÝ THUYẾT VÀ BÀI TẬP TỰ LUẬN GIỚI HẠN DÃY SỐ, GIỚI HẠN HÀM SỐ VÀ HÀM SỐ LIÊN TỤC. §1. GIỚI HẠN CỦA DÃY SỐ. 1. Giới hạn hữu hạn của dãy số. 2. Giới hạn vô cực của dãy số. 3. Các giới hạn đặc biệt của dãy số. 4. Định lí về giới hạn hữu hạn của dãy số. 5. Một vài quy tắc tìm giới hạn vô cực của dãy số. 6. Tổng cấp số nhân lùi vô hạn. 7. Định lí kẹp về giới hạn của dãy số. 8. Một số lưu ý cần nắm khi tính giới hạn của dãy số. 9. Phương pháp tìm giới hạn của dãy số. 10. Phương pháp tính tổng của cấp số nhân lùi vô hạn. §2. GIỚI HẠN CỦA HÀM SỐ. 1. Giới hạn hữu hạn của hàm số. 2. Giới hạn vô cực của hàm số. 3. Định lí vể giới hạn hữu hạn của hàm số. 4. Các giới hạn đặc biệt của hàm số. 5. Quy tắc về giới hạn vô cực của hàm số. a) Quy tắc tìm giới hạn của tích hai hàm số ƒ(x).g(x). b) Quy tắc tìm giới hạn của thương hai hàm số ƒ(x)/g(x). 6. Khử các dạng vô định giới hạn của hàm số. §3. HÀM SỐ LIÊN TỤC. 1. Hàm số liên tục. 2. Các định lí về hàm số liên tục. PHẦN II . TRẮC NGHIỆM GIỚI HẠN DÃY SỐ, GIỚI HẠN HÀM SỐ VÀ HÀM SỐ LIÊN TỤC.
Trắc nghiệm nâng cao giới hạn - Đặng Việt Đông
Tài liệu trắc nghiệm nâng cao giới hạn được biên soạn bởi thầy Đặng Việt Đông gồm 51 trang tuyển chọn các câu hỏi và bài tập trắc nghiệm chủ đề giới hạn có đáp án và lời giải chi tiết trong chương trình Đại số và Giải tích 11 chương 4, các câu hỏi và bài tập có độ khó cao được trích dẫn trong các đề thi thử môn Toán nhằm giúp học sinh ôn luyện chinh phục điểm 8 – 9 – 10 trong đề thi THPT Quốc gia môn Toán.
Giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục - Lê Hải Trung
Tài liệu gồm 75 trang được biên soạn bởi thầy Lê Hải Trung trình bày lý thuyết, dạng toán, ví dụ minh họa và các bài tập trắc nghiệm có lời giải chi tiết chuyên đề giới hạn của dãy số, giới hạn của hàm số và hàm số liên tục trong chương trình Đại số và Giải tích 11 chương 4. BÀI 1 : GIỚI HẠN CỦA DÃY SỐ + Dạng 1: Giới hạn 0 + Dạng 2: Dạng vô định ∞/∞ + Dạng 3: Dạng vô định a.∞ (a khác 0) + Dạng 4: Dạng vô đinh 0.∞ + Dạng 5: Cấp số nhân lùi vô hạn BÀI 2 : GIỚI HẠN HÀM SỐ + Dạng 1: Sử dụng định nghĩa + Dạng 2: Dạng vô định 0/0 + Dạng 3: Dạng vô định ∞/∞ + Dạng 4: Dạng vô định ∞ – ∞ + Dạng 5: Giới hạn 1 bên + Dạng 6 : Giới hạn lượng giác – phần nâng cao [ads] BÀI 3 : HÀM SỐ LIÊN TỤC + Dạng 1: Xét tính liên tục của hàm số $f(x) = \left\{ \begin{array}{l} {f_1}(x)\,khi\,x \ne {x_0}\\ {f_2}(x)\,khi\,x = {x_0} \end{array} \right.$ + Dạng 2: Xét tính liên tục của hàm số $f(x) = \left\{ \begin{array}{l} {f_1}(x)\,khi\,x < {x_0}\\ {f_2}(x)\,khi\,x \ge {x_0} \end{array} \right.$ + Dạng 3: Bài toán về số nghiệm của phương trình