Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát Toán thi tốt nghiệp THPT 2022 lần 1 sở GDĐT Vĩnh Phúc

Thứ Sáu ngày 18 tháng 03 năm 2022, sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc tổ chức kỳ thi khảo sát kiến thức chuẩn bị cho kỳ thi tốt nghiệp THPT môn Toán năm học 2021 – 2022 lần thứ nhất. Đề khảo sát Toán thi tốt nghiệp THPT 2022 lần 1 sở GD&ĐT Vĩnh Phúc mã đề 205 gồm 06 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút (không kể thời gian phát đề). Trích dẫn đề khảo sát Toán thi tốt nghiệp THPT 2022 lần 1 sở GD&ĐT Vĩnh Phúc : + Một người thợ cần thiết kế một bể cá hình hộp chữ nhật bằng kính, có chiều cao là 0,8m, thể tích 3 576dm. Biết rằng phần nắp phía trên của bể cá người thợ đó để trống một ô có diện tích bằng 30% diện tích đáy bể. Biết rằng loại kính mà người thợ đó sử dụng làm mặt bên và nắp bể có giá 1000000 đồng/2 m và loại kính để làm mặt đáy có giá thành 1200000đồng/2m. Giả sử phần tiếp xúc giữa các mặt là không đáng kể. Số tiền mua kính ít nhất để hoàn thành bể cá gần nhất với số tiền nào sau đây? A. 4,1 triệu đồng B. 3, 2 triệu đồng C. 2,8 triệu đồng D. 3,8 triệu đồng. + Đầu mỗi tháng anh Hiếu gửi tiết kiệm ngân háng số tiền 10 triệu đồng với hình thức lãi kép, lãi suất là 0, 5% / tháng. Hỏi sau đúng 5 năm thì anh Hiếu nhận được số tiền cả gốc và lãi gần nhất với số tiền nào dưới đây, giả sử rằng trong suốt quá trình gửi, anh Hiếu không rút tiền ra và lãi suất ngân hàng không thay đổi. + Cho một hình nón đỉnh S có đáy là đường tròn tâm O, bán kính R 5 và góc ở đỉnh là 2 với 2 sin 3. Một mặt phẳng P vuông góc với SO tại H và cắt hình nón theo một đường tròn tâm H. Gọi V là thể tích của khối nón đỉnh O và đáy là đường tròn tâm H. Biết 50 81 V khi a SH b với a b và a b là phân số tối giản. Tính giá trị của biểu thức.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử tốt nghiệp THPT 2021 môn Toán lần 1 trường Tiên Du 1 - Bắc Ninh
Nhằm mục đích kiểm tra chất lượng môn Toán đối với học sinh khối 12 giai đoạn giữa HK1, đồng thời rèn luyện từng bước để chuẩn bị cho kỳ thi THPTQG 2021, vừa qua, trường THPT Tiên Du số 1, tỉnh Bắc Ninh tổ chức kỳ thi thử tốt nghiệp THPT môn Toán năm học 2020 – 2021 lần thứ nhất. Đề thi thử tốt nghiệp THPT 2021 môn Toán lần 1 trường Tiên Du 1 – Bắc Ninh mã đề 101 gồm 06 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút, đề thi có đáp án. Trích dẫn đề thi thử tốt nghiệp THPT 2021 môn Toán lần 1 trường Tiên Du 1 – Bắc Ninh : + Xét phét thử T: “Gieo một con súc sắc cân đối và đồng chất” và biến cố A liên quan đến phép thử: “Mặt lẻ chấm xuất hiện”. Chọn khẳng định sai trong những khẳng định dưới đây. + Mệnh đề nào sau đây sai: A. Hai khối hộp chữ nhật có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. B. Hai khối lăng trụ có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. C. Hai khối lập phương có diện tích toàn phần bằng nhau thì có thể tích bằng nhau. D. Hai khối chóp có diện tích đáy và chiều cao tương ứng bằng nhau thì có thể tích bằng nhau. + Cho biết đồ thị hàm số y = x^4 – 2mx^2 – 2m^2 + m^4 có ba điểm cực trị A, B, C cùng với điểm D(0;-3) là 4 đỉnh của một hình thoi. Gọi S là tổng các giá trị m thỏa mãn đề bài thì S thuộc khoảng nào sau đây?
Bộ đề phát triển đề thi tốt nghiệp THPT năm 2020 môn Toán
Tài liệu gồm 209 trang, được biên soạn bởi quý thầy, cô giáo nhóm Diễn Đàn Giáo Viên Toán, tuyển tập 06 đề phát triển đề thi tốt nghiệp THPT năm 2020 môn Toán (mã đề 101), có đáp án và lời giải chi tiết, giúp các em học sinh tham dự kỳ thi tốt nghiệp THPT 2020 môn Toán lần thứ hai tham khảo, rèn luyện. Ma trận đề thi tốt nghiệp THPT môn Toán năm học 2019 – 2020 (mã đề 101):
Đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Nguyễn Hiền - Đà Nẵng
giới thiệu đến quý thầy, cô giáo và các em học sinh đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Nguyễn Hiền – Đà Nẵng; đề thi có mã đề 203, gồm 05 trang với 50 câu trắc nghiệm, thời gian học sinh làm bài thi là 90 phút, đề thi có đáp án và lời giải chi tiết các bài toán vận dụng – vận dụng cao; hi vọng qua đề thi này, các em sẽ có sự chuẩn bị thật tốt cho kỳ thi tốt nghiệp THPT 2020 môn Toán đợt 2. Trích dẫn đề thi thử tốt nghiệp THPT 2020 môn Toán trường THPT Nguyễn Hiền – Đà Nẵng : + Có 10 quyển sách nội dung khác nhau nhưng cùng kích cỡ, gồm 4 quyển toán trong đó có 1 quyển hình học, 6 quyển còn lại thuộc các môn xã hội trong đó có 1 quyển tiếng anh. Xếp ngẫu nhiên 10 quyển sách đó thành hàng ngang trên cùng một giá sách. Tính xác suất để giữa 2 quyển sách toán luôn có đúng 2 quyển sách của các môn xã hội đồng thời 2 quyển tiếng anh và hình học không đứng cạnh nhau. [ads] + Công ty A đang tiến hành thử nghiệm độ chính xác của bộ xét nghiệm COVID-19. Biết rằng: cứ sau n lần thử nghiệm thì tỷ lệ chính xác tuân theo công thức S(n) = 1/(1 + 2020.10^-0,01n). Hỏi phải tiến hành ít nhất bao nhiêu lần thử nghiệm để đảm bảo tỉ lệ chính xác đạt trên 90%? + Trong tất cả các khối chóp tam giác cùng đỉnh S và có cùng độ dài các cạnh bên lần lượt là 2a, a√2, a√3 (mặt đáy là tam giác có độ dài các cạnh thay đổi), tồn tại một khối chóp có thể tích lớn nhất là Vmax. Giá trị của Vmax là?
Đề thi thử TN THPT 2020 môn Toán kênh truyền hình Giáo dục Quốc gia VTV7 (Đề 3)
giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi thử TN THPT 2020 môn Toán kênh truyền hình Giáo dục Quốc gia VTV7 (Đề 3), nhằm giúp các em rèn luyện để chuẩn bị cho kỳ thi tốt nghiệp THPT 2020 môn Toán do Bộ Giáo dục và Đào tạo tổ chức. Đề thi thử TN THPT 2020 môn Toán kênh truyền hình Giáo dục Quốc gia VTV7 (Đề 3) gồm có 50 câu trắc nghiệm, thời gian làm bài 90 phút, kỳ thi được diễn ra theo hình thức thi trực tuyến, đề thi có đáp án và lời giải chi tiết. Trích dẫn đề thi thử TN THPT 2020 môn Toán kênh truyền hình Giáo dục Quốc gia VTV7 (Đề 3) : + Cho hai hình nón có cùng chiều cao cắt nhau theo thiết diện là đường tròn (như hình vẽ) đường sinh của hình nón thứ nhất bằng 2a, góc tại đỉnh của hình nón thứ nhất bằng 60 độ, góc tại đỉnh của hình nón thứ hai bằng 120 độ. Diện tích thiết diện bằng? + Một cơ quan y tế của một vùng, qua các nghiên cứu, nhận thấy rằng t tuần sau khi một loại dịch cúm bắt đầu lan truyền ở vùng đó thì sẽ có khoảng 20/(3 + 17e^-1,1t) nghìn người mắc bệnh đó. Hỏi từ lúc bắt đầu lan truyền thì mất ít nhất bao nhiêu tuần để số người nhiễm bệnh đó vượt quá 4 nghìn người? Làm tròn đến đơn vị tuần. + Trong hình vẽ bên các đường cong (C1): y = a^x, (C2): y = b^x, (C3): y = c^x và đường thẳng y = 4 cắt các đường cong (C1), (C2), (C3) lần lượt tại các điểm A, B, C, D sao cho HA = AB = BC. Khẳng định nào sau đây là đúng?