Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề Olympic chuyên Toán THCS lần 1 năm 2023 - 2024 trường chuyên Hạ Long Quảng Ninh

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi Olympic chuyên môn Toán dành cho học sinh THCS lần thứ nhất năm học 2023 – 2024 trường THPT chuyên Hạ Long, tỉnh Quảng Ninh; kỳ thi được diễn ra vào ngày 31 tháng 03 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề Olympic chuyên Toán THCS lần 1 năm 2023 – 2024 trường chuyên Hạ Long – Quảng Ninh : + Cho một mạng lưới các ô vuông kích thước 5 5 trong đó có khuyết một hình vuông kích thước 2 2 như hình vẽ. Một người đứng ở điểm A cần di chuyển đến điểm B, biết mỗi bước đi chỉ có thể đi lên trên hoặc sang phải theo đỉnh mỗi ô vuông kích thước 1 1. Hỏi có bao nhiêu cách để người đó có thể di chuyển từ A đến B. + Cho tam giác ABC không cân có đường tròn nội tiếp I tiếp xúc với các cạnh BC CA AB lần lượt tại D E F. Điểm K là hình chiếu vuông góc của D trên đường thẳng EF đường thẳng qua K vuông góc với IK cắt các đường thẳng CA BA lần lượt tại V U. a) Chứng minh rằng tứ giác AVIU nội tiếp và UF VE. b) Chứng minh rằng KF DB KE DC. c) Gọi E’ là tiếp điểm của đường tròn bàng tiếp góc B của tam giác ABC với AC F là tiếp điểm của đường tròn bàng tiếp góc C của tam giác ABC với AB. Chứng minh các điểm E F U V cùng thuộc một đường tròn. + Chứng minh rằng với mọi số nguyên dương m số 4(8 7) m không thể viết được dưới dạng tổng của ba số chính phương (số chính phương là bình phương của một số nguyên).

Nguồn: toanmath.com

Đọc Sách

Đề thi chọn HSG tỉnh Toán 9 năm 2022 - 2023 sở GDĐT Quảng Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 9 THCS năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Quảng Bình; kỳ thi được diễn ra vào thứ Ba ngày 13 tháng 12 năm 2022. Trích dẫn Đề thi chọn HSG tỉnh Toán 9 năm 2022 – 2023 sở GD&ĐT Quảng Bình : + Cho hệ phương trình (với m là tham số). Tìm tất cả các giá trị của m để hệ phương trình trên có nghiệm duy nhất (x;y) thỏa điều kiện x + y > 1. + Cho hình vuông ABCD có cạnh bằng a. Điểm E di động trên cạnh CD (khác C, D). M là giao điểm của AE với BC. Qua A kẻ đường thẳng vuông góc với AE cắt CD tại N. I là trung điểm của đoạn thẳng MN. Đường phân giác của góc BAE cắt cạnh BC tại P. Chứng minh rằng: a) BM.DE = a². b) AI vuông góc với MN và I luôn nằm trên một đường thẳng cố định khi E di động trên cạnh CD (khác C, D). c) AP ≤ 2EP. + Cho P = n6 − n4 + 2n3 + 2n2 (với n thuộc N và n > 1). Chứng minh rằng: P không phải là số chính phương.
Đề thi HSG Toán 9 cấp huyện năm 2022 - 2023 phòng GDĐT Sơn Động - Bắc Giang
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi văn hóa môn Toán 9 cấp huyện năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Sơn Động, tỉnh Bắc Giang; đề thi được biên soạn theo cấu trúc 60% trắc nghiệm + 40% tự luận (theo điểm số), thời gian làm bài 120 phút, không kể thời gian giao đề; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm; kỳ thi được diễn ra vào ngày 20 tháng 10 năm 2022. Trích dẫn Đề thi HSG Toán 9 cấp huyện năm 2022 – 2023 phòng GD&ĐT Sơn Động – Bắc Giang : + Một cây cau có chiều cao 7m. Để hái một buồn cau xuống, phải đặt thang tre sao cho đầu thang tre đạt độ cao đó, khi đó góc của thang tre với mặt đất là bao nhiêu, biết chiếc thang dài 8m (làm tròn đến phút). + Cho tam giác ABC vuông tại A AB AC kẻ đường cao AH của ABC. Gọi D và E là hình chiếu của H trên AB và AC. 1) Cho AB cm 6 và HC cm 6 4. Tính BC và AC. 2) Chứng minh: 3 DE BC BD CE. 3) Đường thẳng qua B vuông góc với BC cắt HD tại M; Đường thẳng qua C vuông góc với BC cắt HE tại N. Chứng minh M A N thẳng hàng. + Cho đường tròn O 2 AB là một dây của đường tròn có độ dài là 2. Khoảng cách từ tâm O đến AB có giá trị là?
Đề thi học sinh giỏi Toán 9 năm 2022 - 2023 phòng GDĐT Thái Hòa - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 cấp thị xã năm học 2022 – 2023 phòng Giáo dục và Đào tạo Thái Hòa, tỉnh Nghệ An. Trích dẫn Đề thi học sinh giỏi Toán 9 năm 2022 – 2023 phòng GD&ĐT Thái Hòa – Nghệ An : + Cho a, b, c là các số thực dương thỏa mãn abc = 1. Tìm giá trị lớn nhất của biểu A. + Cho tam giác ABC nhọn, có các đường cao AD, BE, CF cắt nhau tại H. Gọi I, K, M, N lần lượt là hình chiếu của điểm D trên các đường thẳng BE, CF, AB, AC a) Chứng minh: HI.HB = HK.HC b) Chứng minh: IK // EF và bốn điểm I, K, M, N thẳng hàng. c) Trong các tam giác AEF, BDF, CDE có ít nhất một tam giác có diện tích nhỏ hơn hoặc bằng 1/4 diện tích tam giác ABC. + Cho 69 số nguyên dương phân biệt không vượt quá 100. Chứng minh rằng có thể chọn ra từ 69 số đó 4 số sao cho trong chúng có 1 số bằng tổng của 3 số còn lại.
Đề thi HSG Toán 9 cấp thị xã năm 2022 - 2023 phòng GDĐT Ninh Hòa - Khánh Hòa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi chọn học sinh giỏi môn Toán 9 THCS cấp thị xã năm học 2022 – 2023 phòng Giáo dục và Đào tạo Ninh Hòa, tỉnh Khánh Hòa. Trích dẫn Đề thi HSG Toán 9 cấp thị xã năm 2022 – 2023 phòng GD&ĐT Ninh Hòa – Khánh Hòa : + Cho bảy số nguyên tố phân biệt thỏa mãn chia hết cho 2. Chứng minh P1 = 2, P2 = 3, P3 = 5. + Gọi A là một tập hợp con của tập X = {1; 2; 3; …; 2022} thỏa mãn điều kiện A có ít nhất 2 phần tử và nếu x thuộc A, y thuộc A, x > y thì 7y2/(4x – y) thuộc A. Hỏi có bao nhiêu tập hợp A như vậy? + Cho tam giác ABC vuông tại A, điểm D trên cạnh huyền BC (D khác B và C). Gọi E là điểm đối xứng với D qua AB và G là giao điểm của AB với DE. Từ giao điểm H của AB với CE, hạ đoạn thẳng HI vuông góc với BC tại điểm I. Các tia CH và IG cắt nhau tại điểm K. a) Gọi F là điểm đối xứng của D qua AC. Chứng minh rằng khi D di động trên cạnh BC thì đường thẳng EF luôn đi qua một điểm cố định. b) Chứng minh BK vuông góc CE. c) Chứng minh rằng tia KC là tia phân giác của góc AIK.