Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi cấp tỉnh Toán 10 năm 2023 - 2024 sở GDĐT Hải Dương

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề thi chọn học sinh giỏi cấp tỉnh môn Toán 10 THPT năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Hải Dương; kỳ thi được diễn ra vào ngày 05 tháng 04 năm 2024; đề thi có đáp án và hướng dẫn chấm điểm. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán 10 năm 2023 – 2024 sở GD&ĐT Hải Dương : + Một xưởng cơ khí có hai công nhân là An và Bình. Xưởng sản xuất hai loại sản phẩm I và II. Mỗi sản phẩm loại I bán lãi 500 nghìn đồng, mỗi sản phẩm loại II bán lãi 400 nghìn đồng. Để sản xuất được một sản phẩm loại I thì An phải làm việc trong 3 giờ, Bình phải làm việc trong 1 giờ. Để sản xuất được một sản phẩm loại II thì An phải làm việc trong 2 giờ, Bình phải làm việc trong 6 giờ. Một người không thể tham gia làm hai loại sản phẩm tại cùng một thời điểm. Biết rằng trong một tháng An không thể làm việc quá 180 giờ và Bình không thể làm việc quá 220 giờ. Tính số tiền lãi lớn nhất trong một tháng của xưởng đó. + Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi S là tập hợp các số tự nhiên có 3 chữ số và chia hết cho 6 được lập từ các chữ số thuộc tập A. Tính số phần tử của tập S. + Cho tam giác nhọn ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi HEK lần lượt là chân đường cao kẻ từ các đỉnh ABC. Gọi diện tích các tam giác ABC và HEK lần lượt là S và 0 S. Biết G là trọng tâm tam giác ABC và 0 3 1 4 S S. Tính độ dài đoạn OG.

Nguồn: toanmath.com

Đọc Sách

Đề thi HSG Toán 10 cấp trường năm 2018 - 2019 trường Thuận Thành 2 - Bắc Ninh
Nhằm tuyển chọn các em học sinh khối lớp 10 giỏi môn Toán để thành lập đội tuyển học sinh giỏi Toán 10 THPT, trường THPT Thuận Thành 2, tỉnh Bắc Ninh tiến hành tổ chức kỳ thi chọn học sinh giỏi Toán 10 THPT năm học 2018 – 2019. Các em học sinh đạt điểm số cao trong kỳ thi lần này sẽ được tuyên dương trước toàn trường để làm tấm gương học tập cho các học sinh khác, đồng thời được tiếp tục bồi dưỡng, tham dự kỳ thi học sinh giỏi Toán cấp tỉnh. Đề thi HSG Toán 10 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh được biên soạn theo hình thức tự luận với 06 bài toán, đề gồm 01 trang, học sinh làm bài thi trong 150 phút, đề thi có lời giải chi tiết. [ads] Trích dẫn đề thi HSG Toán 10 cấp trường năm 2018 – 2019 trường Thuận Thành 2 – Bắc Ninh : + Cho x1 và x2 là hai nghiệm của phương trình x^2 – 3x + a = 0; x3 và x4 là hai nghiệm của phương trình x^2 – 12x + b = 0. Biết rằng x2/x1 = x3/x2 = x4/x3. Tìm a và b. + Trên mặt phẳng tọa độ cho hai điểm A(-1;1); B(2;4). a) Tìm điểm C trên trục Ox sao cho tam giác ABC vuông tại B. b) Tìm điểm D sao cho tam giác ABD vuông cân tại A. + Cho hàm số y = x^2 – 4x + 4 – m (Pm). a) Khảo sát và vẽ đồ thị hàm số với m = 1. b) Tìm m để (Pm) cắt trục hoành tại 2 điểm phân biệt có hoành độ cùng thuộc đoạn [-1;4].
Đề thi chọn HSG Toán 10 cấp trường năm 2017 - 2018 trường Lý Thái Tổ - Bắc Ninh
Đề thi chọn HSG Toán 10 cấp trường năm 2017 – 2018 trường Lý Thái Tổ – Bắc Ninh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 120 phút, kỳ thi được tổ chức vào ngày 14 tháng 04 năm 2018, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG Toán 10 cấp trường năm 2017 – 2018 : + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I. Trung điểm cạnh AB là M(0; 3), trung điểm đoạn CI là J(1;0). Tìm tọa độ các đỉnh của hình vuông, biết đỉnh D thuộc đường thẳng ∆: x – y + 1 = 0. [ads] + Cho Parabol (P): y = x^2 + 2mx + 3 và đường thẳng (d): y = 2x − 1. Tìm m để (P) và (d) cắt nhau tại hai điểm phân biệt A và B thỏa mãn AB = 10. + Cho tam giác ABC có BC = 2, góc A = 60 độ và hai đường trung tuyến BM, CN vuông góc với nhau. Tính diện tích tam giác ABC.
Đề thi chọn HSG cấp trường Toán 10 năm 2017 - 2018 trường THPT Con Cuông - Nghệ An
Đề thi chọn HSG cấp trường Toán 10 năm 2017 – 2018 trường THPT Con Cuông – Nghệ An gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề), đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG cấp trường Toán 10 năm 2017 – 2018 : + Cho tam giác ABC. Gọi D, E lần lượt là các điểm thỏa mãn vtBD = 2/3.vtBC, vtAE = 1/4.vtAC. Điểm K trên đoạn thẳng AD sao cho 3 điểm B, K, E thẳng hàng. Tìm tỉ số AD/AK. [ads] + Trong mặt phẳng tọa độ Oxy cho tam giác ABC vuông tại B, AB = 2BC, D là trung điểm AB, E là điểm thuộc đoạn AC sao cho AC = 3EC, có phương trình CD: x – 3y + 1 = 0, E(16/3;1). a) Chứng minh rằng BE là phân giác trong của góc B. Tìm tọa độ điểm I là giao của CD và BE. b) Tìm tọa độ các đỉnh A, B, C, biết A có tung độ âm.
Đề thi chọn HSG tỉnh Toán 10 THPT năm học 2017 - 2018 sở GD và ĐT Hà Tĩnh
Đề thi chọn HSG tỉnh Toán 10 THPT năm học 2017 – 2018 sở GD và ĐT Hà Tĩnh gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 180 phút, đề được dành cho học sinh lớp 10 và 11 khối THPT, đề thi có lời giải chi tiết . Trích dẫn đề thi chọn HSG tỉnh Toán 10 THPT : + Một hộ nông dân dự định trồng đậu và cà trên diện tích 800 m2. Biết rằng cứ 100 m2 trồng đậu cần 10 công và lãi 7 triệu đồng còn 100 m2 trồng cà cần 15 công và lãi 9 triệu đồng. Hỏi cần trồng mỗi loại cây trên diện tích là bao nhiêu để thu được tiền lãi cao nhất khi tổng số công không vượt quá 90. [ads] + Trong mặt phẳng với hệ tọa độ Oxy cho tam giác ABC có A(1;2), B(2;7). Biết độ dài đường cao kẻ từ A bằng 1 và đỉnh C thuộc đường thẳng y − 3 = 0. Tìm tọa độ đỉnh C. + Cho tam giác ABC có (sinB + 2018.sinC)/(2018sinB + sinC) = sinA và độ dài các cạnh là các số tự nhiên. Gọi M là trung điểm cạnh BC và G là trọng tâm tam giác ABC. Chứng minh tam giác MBG có diện tích là một số tự nhiên.