Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề kiểm tra học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THCS Ngô Quyền TP HCM

Nội dung Đề kiểm tra học kì 1 (HK1) lớp 9 môn Toán năm 2022 2023 trường THCS Ngô Quyền TP HCM Bản PDF - Nội dung bài viết Đề kiểm tra học kì 1 (HK1) lớp 9 môn Toán năm 2022-2023 trường THCS Ngô Quyền TP HCM Đề kiểm tra học kì 1 (HK1) lớp 9 môn Toán năm 2022-2023 trường THCS Ngô Quyền TP HCM Chào các thầy cô và các bạn học sinh lớp 9! Sytu xin giới thiệu đến quý vị đề kiểm tra chất lượng cuối học kì 1 môn Toán lớp 9 năm học 2022-2023 tại trường THCS Ngô Quyền, quận Tân Bình, thành phố Hồ Chí Minh. Đề thi gồm 01 trang với 07 bài toán dạng tự luận, thời gian làm bài là 90 phút (không tính thời gian phát đề). Dưới đây là một số ví dụ câu hỏi trong đề thi: + Một người đi xe đạp lên đoạn đường dốc từ A đến đỉnh dốc B có độ nghiêng 70 độ so với phương nằm ngang. Với vận tốc trung bình 6 km/h, biết đỉnh dốc cao khoảng 70 m so với phương nằm ngang. Hỏi đoạn đường dốc đó dài bao nhiêu mét và người đó phải mất bao nhiêu phút để tới đỉnh dốc? + Tại một cửa hàng, giá niêm yết của một cái áo là 900,000 đồng. Nếu giảm giá bán 225,000 đồng so với giá niêm yết, cửa hàng vẫn lãi 25% so với giá gốc. Tính giá gốc của một cái áo và giá bán của một cái áo để cửa hàng lãi 40% so với giá gốc. + Một cửa hàng nhập 200 quyển vở với giá niêm yết tăng 7,000 đồng so với giá nhập. Sau khi bán 100 quyển vở, chủ cửa hàng muốn bán nhanh hơn và bán 100 quyển vở còn lại với giảm 10% so với giá niêm yết. Biết sau khi bán hết 200 quyển vở, chủ cửa hàng lãi 1,250,000 đồng. Hỏi giá nhập của mỗi quyển vở là bao nhiêu? Chúc các bạn học sinh đạt kết quả cao trong đề kiểm tra Toán học kì 1 này! Hãy tự tin và cố gắng hết mình!

Nguồn: sytu.vn

Đọc Sách

Đề thi học kì 1 Toán 9 năm 2020 - 2021 trường THPT chuyên Hà Nội - Amsterdam
Đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam gồm 01 trang với 04 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 trường THPT chuyên Hà Nội – Amsterdam : + Cho nửa đường tròn tâm O với bán kính R, đường kính AB. Trên nửa mặt phẳng bờ là đường thẳng AB chứa nửa đường tròn, kẻ tia tiếp tuyến Ax tại A của nửa đường tròn. Xét điểm M thay đổi trên da, không trùng với A. Gọi E là điểm đối xứng với A qua OM. a) Chứng minh rằng ME là một tiếp tuyến của nửa đường tròn (O). b) Đoạn OM cắt nửa đường tròn (O) tại I. Chứng minh rằng I là tâm đường tròn nội tiếp của tam giác AME. c) Gọi N là trung điểm EB. Tia ME cắt ON tại P. Hãy xác định vị trí của điểm M trên tia Ax để diện tích tam giác OMP đạt giá trị nhỏ nhất. Tính giá trị nhỏ nhất đó theo R. d) Gọi C là giao điểm của BE và tia Ox, OC cắt AE tại Q. Kẻ đường thẳng qua Q và song song với Ax, cắt OM tại D. Chứng minh rằng A, D, P thẳng hàng. + Giải phương trình: x2 – 1 = 2√(2x + 1). + Cho a, b là các số thực dương thỏa mãn a – √a = √b – b. Tìm giá trị nhỏ nhất của biểu thức: P = a2 + b2 + 2020/(√a + √b)^2.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Sóc Sơn - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Sóc Sơn, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Sóc Sơn – Hà Nội : + Một máy bay cất cánh theo phương có góc nâng là 0 23 so với mặt đất. Hỏi muốn đạt độ cao 250m so với mặt đất thì máy bay phải bay lên một đoạn đường là bao nhiêu mét? + Cho nửa đường tròn O R; đường kính AB. Lấy điểm C thuộc nửa đường tròn (C khác A và B). Kẻ OE vuông góc với CB (E thuộc CB). Kẻ tiếp tuyến Bx của nửa đường tròn, tiếp tuyến này cắt OE tại D. a) Chứng minh 2 OE OD R. b) Chứng minh CD là tiếp tuyến của O. c) Tứ giác ACDO là hình gì? Vì sao? d) Kẻ CH vuông góc với AB, CH cắt AD tại K. Chứng minh K là trung điểm của AD. + Cho hàm số 2 y m x m 1 4 (với m 1) có đồ thị là đường thẳng d. 1) Với giá trị nào của m thì hàm số đã cho nghịch biến? 2) Tìm m để đường thẳng d cắt đường thẳng d y x 2 5 tại một điểm trên trục tung. 3) Tìm m để đường thẳng d đi qua điểm A 1 3.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đông Anh - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Đông Anh, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đông Anh – Hà Nội : + Một cầu trượt trong công viên có độ dốc là 28 và độ cao so với mặt đất là 2,1m. Tính độ dài của mặt cầu trượt (làm tròn đến chữ số thập phân thứ nhất). + Cho nửa đường tròn O đường kính AB R 2, trên nửa đường tròn lấy điểm C AC BC. Gọi M là trung điểm của BC, qua B kẻ tiếp tuyến Bx với đường tròn O cắt tia OM tại D. a) Chứng minh: AC OD. b) Chứng minh DC là tiếp tuyến của đường tròn O c) VẽCH vuông góc với AB tại H và gọi I là trung điểm của cạnh CH. Kẻ tia tiếp tuyến Ay với nửa đường tròn O, BC cắt Ay tại F, BI cắt Ay tại E. Chứng minh E là trung điểm của AF và ba điểm E C D thẳng hàng. + Cho hàm số y m x m m 1 1 có đồ thị là đường thẳng d 1. Tìm giá trị của m để đường thẳng d đi qua A có tọa độ 1 3. 2. a) Vẽ đường thẳng d với giá trị m tìm được ở câu trên. b) Tìm tọa độ giao điểm của d với đường thẳng d y x 2 1.
Đề thi học kì 1 Toán 9 năm 2020 - 2021 phòng GDĐT Đan Phượng - Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi học kì 1 Toán 9 năm học 2020 – 2021 phòng Giáo dục và Đào tạo Đan Phượng, thành phố Hà Nội. Trích dẫn đề thi học kì 1 Toán 9 năm 2020 – 2021 phòng GD&ĐT Đan Phượng – Hà Nội : + Trong mặt phẳng Oxy, cho đường thẳng (d): y x 3. a) Xác định tọa độ các giao điểm A và B của đường thẳng (d) với hai trục Ox, Oy. Vẽ (d) trong mặt phẳng tọa độ Oxy; b) Tính chu vi của tam giác OAB; c) Tìm m để đường thẳng (d’): 2 2 y m x m m 8 2 song song với đường thẳng (d). + Một tàu ngầm ở trên mặt biển (điểm A) lặn xuống theo phương tạo với mặt nước biển một góc 20. Nếu tàu chuyển động theo phương AC lặn xuống đến vị trí C được 300m thì nó ở độ sâu theo phương thẳng đứng BC là bao nhiêu mét? (Kết quả làm tròn đến chữ số thập phân thứ nhất) (Xem hình vẽ mô tả). + Từ điểm A nằm ngoài đường tròn O vẽ hai tiếp tuyến AM và AN với đường tròn O (M N là các tiếp điểm). Gọi H là giao của MN với OA. a) Chứng minh OA MN và 2 OM OH OA. b) Từ M kẻ đường kính MB của đường tròn O. Đường thẳng AB cắt đường tròn O tại C (C khác B). Chứng minh AC AB AH AO. c) Gọi E là giao điểm của đoạn thẳng OA với đường tròn O. Chứng minh EA MA EH MH. d) Qua O kẻ đường thẳng vuông góc với AB và cắt đường thẳng MN tại D. Chứng minh DB MB.