Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học kỳ 2 Toán 9 năm 2022 - 2023 phòng GDĐT Giao Thuỷ - Nam Định

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề khảo sát chất lượng cuối học kỳ 2 môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Giao Thuỷ, tỉnh Nam Định; đề thi gồm 02 trang, hình thức 20% trắc nghiệm + 80% tự luận, thời gian làm bài 120 phút. Trích dẫn Đề học kỳ 2 Toán 9 năm 2022 – 2023 phòng GD&ĐT Giao Thuỷ – Nam Định : + Cho phương trình x2 — 4x + m = 0 (1) (với m là tham số). 1) Cho biết phương trình (1) có hai nghiệm, trong đó x = 1 là một nghiệm. Hãy tìm m và nghiệm còn lại. 2) Tìm tất cả các giá trị của m để phương trình (1) có hai nghiệm phân biệt x1, x2 thỏa mãn: m(x1 – x2) + 20 = 0. + Cho hình thang ABCD vuông tại A và D, cung tròn (D;DA) cắt cạnh DC tại E (hình vẽ bên). Biết AB = AD = 12cm; CD = 2AB. Tính diện tích phần hình tô đậm trong hình vẽ bên. (Lấy pi ~ 3,14; kết quả làm tròn đến chữ số chữ số hàng đơn vị). + Từ điểm M ở ngoài đường tròn (O) vẽ tiếp tuyến MA (A là tiếp điểm) và cát tuyến MBC đến (O). (A thuộc cung nhỏ BC). Kẻ OH vuông góc với BC tại H. a) Chứng minh tứ giác MAHO nội tiếp và MA.AB = MB.AC. b) Kẻ đường kính AK của đường tròn (O), tia MO cắt CK tại E, tia AE cắt (O) tại D (D khác A). Chứng minh tam giác ABH ~ tam giác EKO và tứ giác ABKD là hình chữ nhật.

Nguồn: toanmath.com

Đọc Sách

Đề thi cuối kì 2 Toán 9 năm 2020 - 2021 sở GDĐT thành phố Đà Nẵng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi cuối kì 2 Toán 9 năm 2020 – 2021 sở GD&ĐT thành phố Đà Nẵng; kỳ thi được diễn ra vào sáng thức Ba ngày 20 tháng 04 năm 2021.
Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT Bắc Từ Liêm - Hà Nội
Đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Bắc Từ Liêm – Hà Nội gồm 01 trang với 05 bài toán tự luận, thời gian làm bài 90 phút. Trích dẫn đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Bắc Từ Liêm – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi là 124m. Nếu tăng chiều dài thêm 5m và chiều rộng thêm 3m thì diện tích mảnh vườn tăng thêm 255m2. Tính chiều dài và chiều rộng của mảnh vườn ban đầu? + Tính diện tích mặt bàn hình tròn có đường kính 1,2 m (kết quả làm tròn đến chữ số thập phân thứ hai). + Cho nửa đường tròn (O;R), đường kính AB. Trên tia tiếp tuyến kẻ từ A của nửa đường tròn này lấy điểm C sao cho AC > R. Từ C kẻ tiếp tuyến thứ hai CD của nửa đường tròn (O;R), với D là tiếp điểm. Gọi H là giao điểm của AD và OC. 1) Chứng minh: ACDO là tứ giác nội tiếp. 2) Đường thẳng BC cắt đường tròn (O;R) tại điểm thứ hai là M. Chứng minh: CD2 = CM.CB. 3) Gọi K là giao điểm của AD và BC. Chứng minh: MHC = CBO và CM/CB = KM/KB.
Đề thi HK2 Toán 9 năm 2020 - 2021 phòng GDĐT Hai Bà Trưng - Hà Nội
Đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hai Bà Trưng – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào thứ Năm ngày 15 tháng 04 năm 2021. Trích dẫn đề thi HK2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Hai Bà Trưng – Hà Nội : + Giải bài toán bằng cách lập phương trình hoặc hệ phương trình: Một mảnh vườn hình chữ nhật có chu vi bằng 34 m. Nếu tăng chiều dài thêm 2 m và tăng chiều rộng thêm 3 m thì diện tích tăng thêm 50 m2. Tính chiều dài và chiều rộng của mảnh vườn. + Một thuyền đánh cá chuẩn bị 10 thùng dầu để ra khơi, mỗi thùng là một hình trụ có đường kính đáy là 0,6m, chiều cao là 1,5m. Hỏi thuyền đó đã chuẩn bị bao nhiêu lít dầu? (bỏ qua độ dày của vỏ thùng). + Trong mặt phẳng tọa độ Oxy, cho parabol (P): y = x^2 và đường thẳng (d): y = (2m – 1)x – m2 + 2 (m là tham số). 1) Tìm tọa độ giao điểm của đường thẳng (d) và parabol (P) khi m = 2. 2) Tìm giá trị của tham số m để (d) cắt (P) tại hai điểm phân biệt có hoành độ thỏa mãn.
Đề thi cuối kỳ 2 Toán 9 năm 2020 - 2021 phòng GDĐT Long Biên - Hà Nội
Đề thi cuối kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội gồm 01 trang với 05 bài toán dạng tự luận, thời gian làm bài 90 phút, kỳ thi được diễn ra vào thứ Sáu ngày 16 tháng 04 năm 2021. Trích dẫn đề thi cuối kỳ 2 Toán 9 năm 2020 – 2021 phòng GD&ĐT Long Biên – Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc lập hệ phương trình: Đáp ứng nhu cầu vận chuyển hàng hóa cho người dân trong đợt dịch Covid-19 vừa qua, một tàu thủy chở hàng đi từ bến A đến bến B, rồi quay lại bến A. Thời gian cả đi và về là 2 giờ 30 phút (không tính thời gian nghỉ). Hãy tìm vận tốc của tàu thủy trong nước yên lặng, biết rằng khoảng cách giữa hai bến sông A và B là 24 km và vận tốc của nước chảy là 4 km/h. + Vẽ đồ thị của hàm số y = -2×2. + Cho phương trình x + (1 – m)x – m = 0 (với x là ẩn số, m là tham số). Xác định các giá trị của m để phương trình có hai nghiện phân biệt thoả mãn điều kiện.