Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi HSG huyện Toán 9 năm 2018 - 2019 phòng GDĐT Thạch Hà - Hà Tĩnh

THCS. giới thiệu đến quý thầy, cô giáo cùng các em học sinh đề thi chọn học sinh giỏi cấp huyện môn Toán lớp 9 năm học 2018 – 2019 phòng Giáo dục và Đào tạo Thạch Hà, tỉnh Hà Tĩnh, đề thi gồm 01 trang được biên soạn theo dạng đề tự luận với 05 bài toán, thời gian học sinh làm bài 150 phút, đề thi có lời giải chi tiết. Trích dẫn đề thi HSG huyện Toán 9 năm 2018 – 2019 phòng GD&ĐT Thạch Hà – Hà Tĩnh : + Qua điểm O nằm trong tam giác ABC ta vẽ 3 đường thẳng song song với 3 cạnh tam giác. Đường thẳng song song với cạnh AB cắt cạnh AC, BC lần lượt tại E và D; đường thẳng song song với cạnh BC cắt cạnh AB và AC lần lượt tại M và N; đường thẳng song song với cạnh AC cắt cạnh AB và BC lần lượt tại F và H. Biết diện tích các tam giác ODH, ONE, OMF lần lượt là a^2, b^2, c^2. a) Tính diện tích S của tam giác ABC theo a, b, c. b) Chứng minh S ≤ 3(a^2 + b^2 + c^2). [ads] + Cho đa thức f(x), tìm dư của phép chia f(x) cho (x – 1)(x + 2). Biết rằng f(x) chia cho x – 1 dư 7 và f(x) chia cho x + 2 dư 1. + Cho 3 số a, b, c khác 0 thỏa mãn a + b + c = 0. Chứng minh hằng đẳng thức: √(1/a^2 + 1/b^2 + 1/c^2) = |1/a + 1/b + 1/c|.

Nguồn: toanmath.com

Đọc Sách

Đề thi thử HSG Toán 9 năm 2022 - 2023 trường THCS Lai Vu - Hải Dương
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 trường THCS Lai Vu, huyện Kim Thành, tỉnh Hải Dương; đề thi gồm 01 trang với 05 bài toán hình thức tự luận, thời gian học sinh làm bài thi là 120 phút. Trích dẫn đề thi thử HSG Toán 9 năm 2022 – 2023 trường THCS Lai Vu – Hải Dương : + Cho tam giác ABC vuông tại A, đường cao AH. Gọi D là trung điểm AH, BD cắt AC tại E. Kẻ HK song song với AE (K thuộc BE) a) Chứng minh cos2B = EA/EC. b) Gọi M là điểm đối xứng của A qua B, N thuộc tia đối của tia HA sao cho HN = 2HA. Gọi P là trung điểm của HN. Chứng minh MN vuông góc NC. + Cho tam giác ABC vuông tại A (AB < AC), các đường phân giác trong và ngoài tại đỉnh A của tam giác cắt BC lần lượt tại M, N. Chứng minh 1 1 1 AM AN AB. + Cho các số nguyên dương a, b thỏa mãn: (a – 2021)(b + 2021) = 4 và ba số thực dương x; y; z sao cho xyz = 1. Chứng minh rằng?
Đề thi thử học sinh giỏi huyện Toán 9 năm 2022 - 2023 THCS Lăng Thành - Nghệ An
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề thi thử kỳ thi chọn học sinh giỏi cấp huyện môn Toán 9 năm học 2022 – 2023 trường THCS Lăng Thành, tỉnh Nghệ An. Trích dẫn đề thi thử học sinh giỏi huyện Toán 9 năm 2022 – 2023 THCS Lăng Thành – Nghệ An : + Tìm số tự nhiên n để A = 2n + 3n + 4n là một số chính phương. + Cho a, b là các số hữu tỉ thỏa mãn a + b và a.b đều là số nguyên. Chứng minh a và b đều là số nguyên. + Cho đường tròn (O) đường kính AB và điểm C nằm bên ngoài đường tròn sao cho CA và CB lần lượt cắt đường tròn (O) tại điểm thứ hai là D và E. AE cắt BD tại H và CH cắt AB tại F. Chứng minh: a) CED = CAB b) AD.AC = AF.AB c) HE HD HF.