Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Tài liệu luyện thi TN THPT 2022 môn Toán - Trần Thanh Hiếu (Quyển 1)

Tài liệu gồm 290 trang, được biên soạn bởi thầy giáo Trần Thanh Hiếu, tuyển tập các chuyên đề luyện thi TN THPT 2022 môn Toán. Mục lục tài liệu luyện thi TN THPT 2022 môn Toán – Trần Thanh Hiếu (Quyển 1): PHẦN 1 : GIẢI TÍCH. Chương 1 : Ứng dụng đạo hàm khảo sát và vẽ đồ thị hàm số. Bài 1 : Sự đồng biến – nghịch biến của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm khoảng đơn điệu của hàm số cho bằng công thức. 2. Tìm khoảng đơn điệu của hàm số cho bằng bảng biến thiên đồ thị. 3. Tìm m đề hàm số y = ax3 + bx2 + cx + d đồng biến – nghịch biến trên R. 4. Biện luận tính đồng biến – nghịch biến của hàm số trên khoảng, đoạn cho trước là tập con của R. 5. Biện luận tính đồng biến – nghịch biến của hàm phân thức y = (ax + b)/(cx + d). 6. Đồng biến – nghịch biến của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Cực trị của hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm cực trị của hàm số cho bằng công thức. 2. Xác định cực trị hàm số cho bằng bảng biến thiên, đồ thị. 3. Tìm m đề hàm số đạt cực trị tại điểm x0. 4. Biện luận cực trị của hàm số bậc ba. 5. Biện luận cực trị của hàm số trùng phương. 6. Cực trị của hàm chứa dấu trị tuyệt đối, hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Giá trị lớn nhất – giá trị nhỏ nhất. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Max – min của hàm số cho bằng công thức. 2. Max – min của hàm số cho bằng bảng biế thiên, đồ thị. 3. Tìm tham số m theo yêu cầu max – min. 4. Max -min của hàm hợp. 5. Bài toán ứng dụng max – min. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Đường tiệm cận của đồ thị hàm số. A. Lý thuyết cơ bản càn nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tìm tiệm cận đứng – tiệm cận ngang của hàm số hữu tỉ. 2. Đường tiệm cận cho bởi bảng biến thiên, đồ thị. 3. Tìm m theo yêu cầu về tiệm cận của bài toán. 4. Tiệm cận của hàm hợp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 5 : Đồ thị các hàm số thường gặp. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng đồ thị hàm số bậc ba. 2. Nhận dạng đồ thị hàm số trùng phương. 3. Nhận dạng đồ thị hàm số nhất biến. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Sự tương giao của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Giải, biện luận phương trình bằng bảng biến thiên đồ thị. 2. Xác định, biện luận giao điểm của đồ thị hàm số bậc ba và đường cong (đường thẳng). 3. Xác định, biện luận giao điểm của đồ thị hàm số trùng phương và đường cong (đường thẳng). 4. Xác định, biện luận giao điểm của đồ thị hàm số nhất biến và đường cong (đường thẳng). 5. Ứng dụng đồ thị biện luận nghiệm bất phương trình. 6. Tương giao hàm hợp, hàm chứa dấu trị tuyệt đối. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Phương trình tiếp tuyến của đồ thị hàm số. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình tiếp tuyến biết x0 hoặc điểm M(x0;y0). 2. Phương trình tiếp tuyết biết tung độ y0. 3. Phương trình tiếp tuyến biết hệ số góc k. 4. Phương trình tiếp tuyến đi qua điểm A(x;y) không thuộc đồ thị hàm số. C. Phiếu học tập. Phiếu học tập số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Hàm số lũy thừa – hàm số mũ – hàm số logarit. Bài 1 : Lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị biểu thức. 2. Rút gọn biểu thức. 3. So sánh lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Hàm số lũy thừa. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định của hàm số lũy thừa. 2. Đạo hàm của hàm số lũy thừa. 3. Nhận dạng đồ thị hàm số lũy thừa. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tính giá trị, rút gọn biểu thức logarit. 2. So sánh logarit. 3. Phân tích, biểu diễn logarit theo các logarit đã biết. 4. Biến đổi logarit tổng hợp. C. Phiếu học tập. Phiếu học tập số 1. Bài 4 : Hàm số mũ – hàm số logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Tập xác định hàm số mũ – logarit. 2. Đạo hàm hàm số mũ – logarit. 3. Nhận dạng đồ thị hàm số mũ – logarit. C. Phiếu học tập. Phiếu học tập số 1. Bài 5 : Phương trình mũ – Phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Phương trình mũ -logarit cơ bản. 2. Phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Phương trình mũ – logarit biến đổi tổng hợp. 4. Phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 6 : Bất phương trình mũ – bất phương trình logarit. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bất phương trình mũ – logarit cơ bản. 2. Bất phương trình bậc hai, quy về bậc hai mũ – logarit. 3. Bất phương trình mũ – logarit biến đổi tổng hợp. 4. Bất phương trình mũ – logarit giải bằng phương pháp hàm số. 5. Bất phương trình mũ – logarit có tham số m. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 7 : Ứng dụng và bài toán Max – Min. A. Lý thuyết cơ bản cần nhớ. B. Thuật toán của một số dạng toán thường gặp. 1. Bài toán lãi suất – tăng trưởng. 2. Max – min, bài toán tổng hợp nhiều biến. C. Phiếu học tập. Phiếu học tạp số 1. Đề ôn tập cuối chương. Đề số 01. Đề số 02. PHẦN 2 : HÌNH HỌC. Chương 1 : Khối đa diện. Bài 1 : Khái niệm về khối đa diện. A. Lý thyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng hình đa diện. 2. Số cạnh, số mặt, số đỉnh của hình đa diện. 3. Phân chia, lắp ghép khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 2 : Khối đa diện lồi và khối đa diện đều. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Nhận dạng khối đa diện lồi – đa diện đều. 2. Mặt phẳng đối xứng của khối đa diện. C. Phiếu học tập. Phiếu học tập số 1. Bài 3 : Thể tích khối chóp. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối chóp có cạnh bên vuông góc với mặt đáy. 2. Khối chóp có mặt bên vuông góc với mặt đáy. 3. Khối chóp đều. 4. Góc, khoảng cách liên quan đến khối chóp. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 4 : Thể tích khối lắng trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Khối lăng trụ đứng tam giác. 2. Khối lăng trụ đứng tứ giác (lập phương, hình hộp chữ nhật). 3. Khối lăng trụ xiên. 4. Góc, khoảng cách liên quan đến khối lăng trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02. Chương 2 : Mặt nón – mặt trụ – mặt cầu. Bài 1 : Mặt nón – khối nón. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình nón. 2. Quay tạo thành hình nón. 3. Thiết diện qua trục, góc ở đỉnh. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình nón. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 2 : Mặt trụ – khối trụ. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của hình trụ. 2. Quay tạo thành hình trụ. 3. Thiết diện qua trục. 4. Thiết diện không qua trục. 5. Ngoại tiếp – nội tiếp của hình trụ. 6. Toán tổng hợp hình trụ – khối trụ. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Bài 3 : Mặt cầu – khối cầu. A. Lý thuyết cơ bản cần nắm. B. Thuật toán của một số dạng toán thường gặp. 1. Các yếu tố cơ bản của khối cầu. 2. Ngoại tiếp hình chóp. 3. Ngoại tiếp lăng trụ đứng, lập phương, hộp chữ nhật. 4. Ngoại tiếp hình nón – hình trụ. 5. Mặt phẳng cắt mặt cầu. C. Phiếu học tập. Phiếu học tập số 1. Phiếu học tập số 2. Đề ôn tập cuối chương. Đề số 01. Đề số 02.

Nguồn: toanmath.com

Đọc Sách

Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2023 môn Toán
Tài liệu gồm 165 trang, được biên soạn bởi tác giả Trần Minh Quang, hướng dẫn giải các bài toán mức độ vận dụng cao (VDC) trong các đề thi thử tốt nghiệp THPT năm 2023 môn Toán; giúp các em học sinh lớp 12 chinh phục mức điểm 9 – 10 trong kỳ thi tốt nghiệp THPT môn Toán năm học 2022 – 2023. Trích dẫn tài liệu Hướng dẫn giải toán VDC trong các đề thi thử TN THPT 2023 môn Toán : + Trong không gian Oxyz cho tam giác ABC có A B C 3 4 4 1 2 3 5 0 1. Điểm M thay đổi trong không gian thỏa mãn ABM AMC 90. Mặt phẳng đi qua B và vuông góc với AC cắt AM tại N. Khoảng cách từ N đến ABC có giá trị lớn nhất bằng? + Trên tập hợp các số phức, xét phương trình 4 2 z m z m 2 2 3 2 0 (m là tham số thực). Có bao nhiêu giá trị thực của tham số m sao cho phương trình đã cho có bốn nghiệm và 4 điểm A B C D biểu diễn 4 nghiệm đó trên mặt phẳng phức tạo thành một tứ giác có diện tích bằng 4? + Một khối nón N có bán kính đáy bằng R và chiều cao bằng 18, được làm bằng chất liệu không thấm nước và có khối lượng riêng lớn hơn khối lượng riêng của nước. Khối N được đặt trong một cái cốc hình trụ đường kính bằng 6R sao cho đáy của N tiếp xúc với đáy của cốc (tham khảo hình vẽ). Đổ nước vào cốc đến khi mực nước đạt độ cao bằng 18 thì lấy khối N ra. Độ cao của nước trong cốc sau khi đã lấy khối N ra bằng?
50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán
Tài liệu gồm 481 trang, được biên soạn bởi thầy giáo Vũ Ngọc Huy (trường THPT chuyên Lê Quý Đôn, tỉnh Ninh Thuận), tuyển tập 50 chuyên đề phát triển đề tham khảo tốt nghiệp THPT 2023 môn Toán của Bộ Giáo dục và Đào tạo, có đầy đủ đáp án và lời giải chi tiết. MỤC LỤC : Phần 1. 50 CÂU PHÁT TRIỂN ĐỀ MINH HỌA 2023. 1 Điểm biểu diễn số phức. 2 Hàm số logarit. 3 Đạo hàm hàm lũy thừa – Hàm mũ – logarit. 4 Phương trình mũ – Bất phương trình mũ. 5 Cấp số cộng, cấp số nhân. 6 Phương trình mặt phẳng. 7 Bài toán liên quan đến giao điểm giữa các đồ thị. 8 Tính chất tích phân. 9 Nhận dạng đồ thị hàm số. 10 Phương trình mặt cầu. 11 Góc giữa hai mặt phẳng. 12 Các phép toán cơ bản của số phức. 13 Tính thể tích khối lăng trụ đứng. 14 Thể tích khối chóp. 15 Định nghĩa, tính chất, vị trí tương đối liên quan đến mặt cầu. 16 Số phức và các phép toán. 17 Hình nón, hình trụ. 18 Phương trình đường thẳng. 19 Tìm cực trị của hàm số biết bảng biến thiên hoặc đồ thị. 20 Đường tiệm cận. 21 Phương trình và bất phương trình logarit. 22 Phép đếm – Hoán vị – Chỉnh hợp – Tổ hợp. 23 Nguyên hàm. 24 Tích phân. 25 Nguyên hàm. 26 Xét tính đơn điệu dựa vào bảng biến thiên của hàm số. 27 Tìm cực trị của hàm số dựa vào đồ thị. 28 Lôgarit. 29 Ứng dụng tích phân tính thể tích vật thể tròn xoay. 30 Góc giữa hai mặt phẳng trong không gian. 31 Sự tương giao của hai đồ thị. 32 Xét tính đơn điệu của hàm số. 33 Xác suất. 34 Phương trình mũ. 35 Phép đếm. 36 Viết phương trình đường thẳng. 37 Điểm đối xứng, hình chiếu của một điểm. 38 Khoảng cách từ một điểm tới mặt phẳng. 39 Phương trình mũ và phương trình logarit. 40 Tích phân hàm ẩn. 41 Cực trị. 42 Cực trị của số phức. 43 Phép đếm. 44 Diện tích hình phẳng. 45 Phương trình với hệ số phức. 46 Phương trình mặt phẳng và khoảng cách. 47 Phép đếm. 48 Hình nón – Hình Trụ. 49 Tương giao đường thẳng, mặt phẳng, mặt cầu, cực trị. 50 Tính đơn điệu của hàm số liên kết. Trong mỗi dạng toán đều bao gồm các nội dung: A Kiến thức cần nhớ – B Bài tập mẫu – C Bài tập tương tự và phát triển – D Bảng đáp án.
Phát triển 16 dạng toán trọng tâm đề tham khảo TN THPT 2023 môn Toán
Tài liệu gồm 545 trang, được biên soạn bởi thầy giáo Phan Nhật Linh, phát triển 16 dạng toán trọng tâm, mức độ vận dụng – vận dụng cao (VD – VDC), từ câu 35 đến câu 50 trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán của Bộ Giáo dục và Đào tạo. + Dạng 1 Tập Hợp Điểm Biểu Diễn Số Phức. + Dạng 2 Viết Phương Trình Đường Thẳng Đi Qua Hai Điểm. + Dạng 3 Tìm Tọa Độ Điểm Liên Quan Đến Mặt Phẳng. + Dạng 4 Khoảng Cách Trong Không Gian. + Dạng 5 Bất Phương Trình Logarit. + Dạng 6 Tính Tích Phân. + Dạng 7 Cực Trị Của Hàm Số. + Dạng 8 Cực Trị Số Phức. + Dạng 9 Thể Tích Khối Đa Diện Khi Biết Yếu Tố Khoảng Cách. + Dạng 10 Ứng Dụng Tích Phân Tính Diện Tích Hình Phẳng. + Dạng 11 Phương Trình Bậc Hai Số Phức. + Dạng 12 Khoảng Cách Trong Hệ Tọa Độ Oxyz. + Dạng 13 Tìm Cặp Số Nguyên Liên Quan Đến Bất Phương Trình Logarit. + Dạng 14 Tính Khoảng Cách Liên Quan Đến Mặt Nón. + Dạng 15 Cực Trị Trong Không Gian Oxyz. + Dạng 16 Tính Đơn Điệu Hàm Số Chứa Giá Trị Tuyệt Đối. Trong mỗi dạng toán đều bao gồm các phần: Kiến Thức Cần Nhớ; Bài Tập Trong Đề Minh Họa; Bài Tập Tương Tự Và Phát Triển; có đáp án và lời giải chi tiết.
Chuyên đề phát triển VD - VDC đề tham khảo thi TN THPT 2023 môn Toán
Tài liệu gồm 529 trang, được biên soạn bởi thầy giáo Đặng Việt Đông, tuyển tập các chuyên đề phát triển bài toán mức độ vận dụng – vận dụng cao (VD – VDC) trong đề tham khảo kỳ thi tốt nghiệp THPT năm 2023 môn Toán, có đáp án và lời giải chi tiết. Trích dẫn Chuyên đề phát triển VD – VDC đề tham khảo thi TN THPT 2023 môn Toán : + Có bao nhiêu giá trị nguyên của tham số m để hàm số 4 2 y x x mx 6 có ba điểm cực trị? Lời giải: Chọn B. Ta có: 3 y x x m 4 12. Xét phương trình 3 y x x m 0 4 12 0 1. Để hàm số có ba điểm cực trị thì phương trình 1 phải có 3 nghiệm phân biệt. Ta có: 3 1 4 12 m x x. Xét hàm số 3 g x x x 4 12 có 2 g x x 12 12. Cho 2 g x x 12 12 0 1. Bảng biến thiên của g x. Dựa vào bảng biến thiên ta thấy, phương trình 1 có 3 nghiệm phân biệt khi 8 8 m. Do m 6 5. Vậy có 15 giá trị nguyên của tham số m thỏa yêu cầu đề bài. + Gọi H là hình chiếu của S lên đáy I J K là hình chiếu của S lên AC CB BA. Dễ dàng chứng minh được góc giữa các mặt bên và đáy là các góc SIH SJH SKH và các tam giác vuông SHI SHJ SHK bằng nhau nên HI HJ HK. Do đó H là tâm đường tròn nội tiếp của tam giác ABC. Ta có: 0 AC AB a BC tan 60 3 2a. Nên diện tích và nửa chu vi của tam giác ABC lần lượt là: 2 2 a a AB AC BC S AB. Suy ra bán kính đường tròn nội tiếp của tam giác ABC là: 2 a S r HK p. Đường cao của khối chóp SABC là 3 3 tan 60 2 a SH HK. Vậy thể tích khối chóp đã cho là? + Cho hàm số 1 3 2 2 4 3 y f x x x mx. Có bao nhiêu giá trị nguyên của tham số m thuộc đoạn 2023 2023 để hàm số y f x 4 nghịch biến trên khoảng 03? Lời giải: Ta có: y f x f x. Đặt t x 4 với x t x 1. Do đó, hàm số y f x 4 nghịch biến trên khoảng 03 khi và chỉ khi hàm số y f t nghịch biến trên khoảng 4 1. Mặt khác y f t là hàm số chẵn, có đồ thị đối xứng qua trục tung. Suy ra hàm số y f t nghịch biến trên khoảng 4 1 khi hàm số y f t đồng biến trên 14 tương ứng với hàm số y f t đồng biến trên 14. Do m và m 2023 2023 nên có 2023 giá trị nguyên của m thỏa mãn bài toán.