Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề chọn HSG Toán 9 năm 2022 - 2023 phòng GDĐT Quảng Trạch - Quảng Bình

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 9 đề kiểm tra định kỳ chọn học sinh giỏi môn Toán 9 năm học 2022 – 2023 phòng Giáo dục và Đào tạo huyện Quảng Trạch, tỉnh Quảng Bình; kỳ thi được diễn ra vào ngày 11 tháng 11 năm 2022. Trích dẫn Đề chọn HSG Toán 9 năm 2022 – 2023 phòng GD&ĐT Quảng Trạch – Quảng Bình : + Cho tam giác ABC vuông tại A có đường cao AH (AB < AC và H thuộc BC). Trên tia HC lấy điểm D sao cho HA = HD. Qua D kẻ đường thẳng vuông góc với BC cắt AC tại E. a) Chứng minh rằng BEC và ADC đồng dạng, từ đó suy ra số đo góc AEB. b) Gọi M là trung điểm của BE. Tính số đo góc AHM. c) Tia AM cắt BC tại G. Chứng minh GB/BC = HD/(AH + HC). + Cho tam giác ABC nhọn (AB < AC) nội tiếp đường tròn (O), hai đường cao BE, CF cắt nhau tại H. Tia AO cắt đường tròn (O) tại D. a) Chứng minh các điểm B, C, E, F thuộc một đường tròn. b) Gọi M là trung điểm của BC, tia AM cắt HO tại G. Chứng minh G là trọng tâm của tam giác ABC. + Cho n là số nguyên dương. Chứng minh rằng nếu 2n + 1 và 3n + 1 là các số chính phương thì 5n + 3 không phải là số nguyên tố.

Nguồn: toanmath.com

Đọc Sách

Đề thi học sinh giỏi môn Toán lớp 9 cấp huyện năm 2019 2020 huyện Nghi Lộc
Đề thi chọn học sinh giỏi môn Toán 9 vòng 1 năm 2019 2020 huyện Thường Tín Hà Nội
Đề thi học sinh giỏi môn Toán 9 cấp huyện năm 2019 2020 sở Nghệ An
Đề thi chọn HSG huyện Toán 9 năm 2019 2020 huyện Quan Sơn Thanh Hóa