Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề minh họa cuối học kì 2 Toán 10 năm 2023 - 2024 sở GDĐT Quảng Ngãi

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 10 đề minh họa kiểm tra cuối học kì 2 môn Toán 10 năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Quảng Ngãi; đề thi được biên soạn theo cấu trúc 70% trắc nghiệm + 30% tự luận (theo điểm số), có ma trận, bảng đặc tả, đáp án và hướng dẫn chấm điểm. 1 BẤT PHƯƠNG TRÌNH BẬC HAI MỘT ẨN 1.1. Dấu của tam thức bậc hai. – Nhận biết: + Nhận biết được dấu của tam thức bậc hai trong trường hợp đặc biệt. + Tính được nghiệm và biệt thức của tam thức bậc hai. – Thông hiểu: + Hiểu được định về dấu của tam thức bậc hai. 1.2. Giải BPT bậc hai một ẩn. – Nhận biết: + Nhận biết được bất phương trình bậc hai một ẩn. – Thông hiểu: + Giải được bất phương trình bậc hai một ẩn. + Hiểu được định lý về dấu của tam thức bậc hai trong bất phương trình bậc hai. 1.3. Phương trình quy về phương trình bậc hai. – Nhận biết: + Nhận biết nghiệm phương trình. – Thông hiểu: + Giải phương trình. 2 PHƯƠNG PHÁP TỌA ĐỘ TRONG MẶT PHẲNG 2.2. Đường thẳng trong mp tọa độ. – Nhận biết: + Nhận biết được phương trình tổng quát và phương trình tham số của đường thẳng trong mặt phẳng tọa độ; VT chỉ phương, VT pháp tuyến. + Biết công thức tính góc giữa 2 đường thẳng, công thức tính khoảng cách từ điểm đến đường thẳng. – Thông hiểu: + Viết phương trình tham số, phương trình tổng quát của đường thẳng trường hợp đơn giản. + Xác định được hai đường thẳng cắt nhau, song song, trùng nhau, vuông góc với nhau bằng phương pháp tọa độ. + Tính được khoảng cách từ một điểm đến một đường thẳng bằng phương pháp tọa độ. – Vận dụng: + Viết phương trình tham số, phương trình tổng quát của đường thẳng thoả điều kiện cho trước. – Vận dụng cao: + Vận dụng được kiến thức về phương trình đường thẳng để giải một số bài toán có liên quan đến thực tiễn. 2.3. Đường tròn trong mp tọa độ. – Nhận biết: + Nhận dạng được phương trình đường tròn trong mặt phẳng tọa độ. – Thông hiểu: + Viết được phương trình đường tròn khi biết tọa độ tâm và bán kính; biết tọa độ ba điểm mà đường tròn đi qua; xác định được tâm và bán kính đường tròn khi biết phương trình của đường tròn. – Vận dụng: + Viết được phương trình tiếp tuyến của đường tròn khi biết tọa độ của tiếp điểm. – Vận dụng cao: + Vận dụng được kiến thức về phương trình đường tròn để giải một số bài toán liên quan đến thực tiễn (ví dụ: bài toán về chuyển động tròn trong Vật lí). 2.4. Ba đường Conic trong mp tọa độ. – Nhận biết: + Nhận biết được tiêu điểm các đường conic bằng hình học. + Nhận biết được phương trình chính tắc của các đường conic trong mặt phẳng tọa độ. – Thông hiểu: + Tìm các yếu tố của các đường conic. 3 ĐẠI SỐ TỔ HỢP 3.1. Quy tắc cộng và quy tắc nhân. – Nhận biết: + Nhận biết quy tắc cộng và quy tắc nhân. – Thông hiểu: + Vẽ và sử dụng được sơ đồ hình cây trong mô tả, trình bày, giải thích khi giải các bài toán đơn giản. – Vận dụng cao: + Vận dụng được quy tắc cộng và quy tắc nhân trong một số tình huống đơn giản (ví dụ: đếm số khả năng xuất hiện mặt sấp / ngửa khi tung một số đồng xu). + Vận dụng được sơ đồ hình cây trong các bài toán đếm đơn giản các đối tượng trong Toán học, trong các môn học khác cũng như trong thực tiễn (ví dụ: đếm số hợp tử tạo thành trong Sinh học, hoặc đếm số trận đấu trong một giải thể thao). 3.2. Hoán vị, chỉnh hợp và tổ hợp. – Nhận biết: + Nhận biết các khái niệm hoán vị, chỉnh hợp và tổ hợp. + Nhận biết được các hoán vị, chỉnh hợp, tổ hợp trong những tình huống thực tế đơn giản. – Thông hiểu: + Tính được số các hoán vị, chỉnh hợp, tổ hợp. – Vận dụng: + Vận dụng được khái niệm hoán vị, chỉnh hợp, tổ hợp để giải những bài toán đếm trong tình huống thực tế. + Vận dụng được khái niệm hoán vị, chỉnh hợp, tổ hợp để giải những bài toán tìm số. 3.3. Nhị thức Newton. – Nhận biết: + Nhận biết được số hạng, số hạng của công thức khai triển nhị thức Newton. – Thông hiểu: + Sử dụng các công thức này khai triển các nhị thức Newton với số mũ thấp. 4 XÁC SUẤT 4.1. Không gian mẫu và biến cố. – Nhận biết: + Biết khái niệm không gian mẫu, biến cố. – Thông hiểu: + Mô tả được không gian mẫu, biến cố trong một số thí nghiệm đơn giản. 4.2. Xác suất của biến cố. – Nhận biết: + Biết tính xác suất của biến cố đơn giản. + Nhận biết được biến cố đối và tính được xác suất của biến cố đối. – Thông hiểu: + Mô tả được tính chất cơ bản của xác suất và tính xác suất của biến cố. – Vận dụng: + Tính được xác suất trong một số thí nghiệm lặp bằng cách sử dụng sơ đồ hình cây. + Tính được xác suất của biến cố trong bài toán thực tế.

Nguồn: toanmath.com

Đọc Sách

Đề thi HK2 Toán 10 năm 2018 - 2019 trường THPT Nguyễn Chí Thanh - TP HCM
Sau khi học sinh khối lớp 10 hoàn thành chương trình Toán 10, trường THPT Nguyễn Chí Thanh, thành phố Hồ Chí Minh đã tổ chức kì thi kiểm tra chất lượng học kì 2 môn Toán 10 năm học 2018 – 2019, kỳ thi nhằm tổng kết lại các kiến thức Toán 10 học sinh đã học trong thời gian vừa qua, điểm số trong kỳ thi này cùng các điểm số các em đã đạt được trước đó sẽ là cơ sở để giáo viên xếp loại học lực Toán 10. Đề thi HK2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Chí Thanh – TP HCM được biên soạn theo dạng đề tự luận hoàn toàn, đề gồm 01 trang với 07 bài toán, học sinh có 90 phút để hoàn thành bài thi HK2 Toán 10, đề thi có lời giải chi tiết và thang chấm điểm. Trích dẫn đề thi HK2 Toán 10 năm 2018 – 2019 trường THPT Nguyễn Chí Thanh – TP HCM : + Cho đường thẳng d: x = 2 + 3t, y = 1 + t, (t thuộc R) và hai điểm A(1;2), B(1;-4). 1) Tìm tọa độ trung điểm M của AB và viết phương trình đường trung trực của đoạn thẳng AB. 2) Viết phương trình đường tròn có tâm thuộc đường thẳng d và đi qua 2 điểm A. [ads] + Tìm m để bất phương trình (m – 1)x^2 – 2(3m + 1)x + 2m – 1 ≤ 0 có tập nghiệm là R. + Trong mặt phẳng Oxy cho đường thẳng d: x – y + 1 = 0 và đường tròn (C) có phương trình: x^2 + y^2 – 2x + 2y – 2 = 0. 1) Viết phương trình tiếp tuyến Δ1 của (C) biết Δ1 song song với d. 2) Viết phương trình đường thẳng Δ2 vuông góc với d và cắt (C) tại hai điểm phân biệt M, N sao cho tam giác IMN có diện tích bằng 2, với I là tâm của đường tròn (C).
Đề thi học kỳ 2 Toán 10 năm học 2017 - 2018 sở GD và ĐT Bắc Giang
Đề thi học kỳ 2 Toán 10 năm học 2017 – 2018 sở GD và ĐT Bắc Giang mã đề 101 được biên soạn theo hình thức trắc nghiệm khách quan kết hợp với tự luận, đề gồm 20 câu hỏi trắc nghiệm và 3 bài toán tự luận, thời gian làm bài 90 phút, đề thi có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán 10 năm học 2017 – 2018 : + Cho tam giác ABC, có độ dài ba cạnh là BC = a, AC = b, AB = c. Gọi ma là độ dài đường trung tuyến kẻ từ đỉnh A, R là bán kính đường tròn ngoại tiếp tam giác và S là diện tích tam giác đó. Mệnh đề nào sau đây sai? [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho elíp (E) có phương trình chính tắc là  x^2/25 + y^2/9 = 1. Tiêu cự của (E) là? + Cho đường thẳng ∆: 3x – 4y – 19 = 0 và đường tròn (C): (x – 1)^2 + (y – 1)^2 = 25. Biết đường thẳng ∆ cắt (C) tại hai điểm phân biệt A và B, khi đó độ dài đoạn thẳng AB là?
Đề thi học kỳ 2 Toán 10 năm 2017 - 2018 trường THPT Chu Văn An - Hà Nội
Đề thi học kỳ 2 Toán 10 năm 2017 – 2018 trường THPT Chu Văn An – Hà Nội gồm 1 trang với 5 bài toán tự luận, thời gian làm bài 90 phút, đề thi có lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán 10 năm 2017 – 2018 : + Cho bất phương trình (m + 2)x^2 – 2mx + 1 > 0 (với m là tham số). a) Giải bất phương trình khi m = 2. b) Tìm m để bất phương trình nghiệm đúng với mọi x ∈ R. [ads] + Trong mặt phẳng với hệ tọa độ Oxy, cho đường thẳng Δ: x + 2y – 7 = 0 và điểm I(2;4). a) Viết phương trình của đường thẳng d đi qua I và song song với đường thẳng Δ. b) Viết phương trình đường tròn có tâm I và tiếp xúc với đường thẳng Δ. c) Tìm tọa độ điểm M thuộc trục tung sao cho d(M,Δ) = √5. + Trong mặt phẳng với hệ tọa độ Oxy, cho hình vuông ABCD có tâm I. Gọi M là điểm đối xứng của D qua C. Gọi H, K lần lượt là hình chiếu vuông góc của C và D trên đường thẳng AM. Biết K(1;1), đỉnh B thuộc đường thẳng: y = 5x + 3y – 10 = 0 và đường thẳng HI có phương trình 3x + y + 1 = 0. Tìm tọa độ đỉnh B.
Đề thi học kỳ 2 Toán 10 năm 2017 - 2018 trường THPT Dương Đình Nghệ - Thanh Hóa
Đề thi học kỳ 2 Toán 10 năm 2017 – 2018 trường THPT Dương Đình Nghệ – Thanh Hóa gồm 4 mã đề, mỗi mã đề gồm 12 câu hỏi trắc nghiệm khách quan (3 điểm) và 5 bài toán tự luận (7 điểm), thời gian làm bài 90 phút, đề có đáp án và lời giải chi tiết . Trích dẫn đề thi học kỳ 2 Toán 10 năm 2017 – 2018 : + Trong mặt phẳng tọa độ Oxy, cho tam giác ABC, có A(3;0), B(-2;1), C(4;1). a) Viết phương trình tổng quát của đường cao AH của ΔABC. b) Tìm tọa độ điểm M thuộc cạnh BC sao cho SΔABC = 3/2.SΔMAB. [ads] + Trong mặt phẳng tọa độ Oxy, cho điểm I(1;3) và đường thẳng d: 3x + 4y = 0. Tìm bán kính R của đường tròn tâm I và tiếp xúc với đường thẳng d. + Trong mặt phẳng tọa độ Oxy, tìm phương trình chính tắc của Elip có độ dài trục lớn bẳng 10, độ dài trục bé bằng 8.