Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường PTNK TP HCM

Nội dung Đề tuyển sinh môn Toán (chuyên) năm 2022 2023 trường PTNK TP HCM Bản PDF - Nội dung bài viết Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM Đề thi tuyển sinh môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM Chào đón quý thầy cô và các em học sinh lớp 9, đây là đề thi chính thức cho kỳ thi tuyển sinh vào lớp 10 môn Toán (chuyên) năm học 2022-2023 của trường Phổ thông Năng khiếu, Đại học Quốc gia thành phố Hồ Chí Minh. Đề thi bao gồm 5 câu tự luận, thời gian làm bài 120 phút (không tính thời gian giao đề). Kỳ thi sẽ diễn ra vào thứ Hai ngày 06 tháng 06 năm 2022. Trích dẫn đề thi tuyển sinh lớp 10 môn Toán (chuyên) năm 2022-2023 trường PTNK TP HCM: Cho các phương trình $x^2 - 2ax + 3a = 0$ (1) và $x^2 - 4x + a = 0$ (2), với a là tham số. a) Chứng minh rằng ít nhất một trong hai phương trình trên có nghiệm. b) Giả sử cả hai phương trình trên đều có hai nghiệm phân biệt. Gọi T1 và T2 lần lượt là tổng bình phương các nghiệm của (1) và (2). Chứng minh T1 + 5T2 > 68. Cho phương trình $2^x + 5^y = k$ (x, y, k là các số nguyên dương). a) Chứng minh rằng với mọi k, phương trình không có nghiệm (x;y) với y chẵn. b) Tìm k để phương trình có nghiệm. Cho tam giác ABC nhọn có H là trực tâm. Lấy D đối xứng với H qua A. Gọi I là trung điểm CD, đường tròn (I) đường kính CD cắt AB tại các điểm E, F (E thuộc tia AB). a) Chứng minh ECD = FCH và AE = AF. b) Chứng minh H là trực tâm của tam giác CEF. c) Gọi K là giao điểm BH và AC. Chứng minh tứ giác EFKH nội tiếp và EF là tiếp tuyến chung của các đường tròn ngoại tiếp các tam giác CKE và CKF. d) Chứng minh rằng tiếp tuyến tại C của (I) và tiếp tuyến tại K của đường tròn ngoại tiếp tam giác KEF cắt nhau trên đường thẳng AB. Hy vọng rằng đề thi sẽ giúp quý thầy cô và các em học sinh lớp 9 chuẩn bị tốt cho kỳ thi tuyển sinh sắp tới. Chúc tất cả các em đạt kết quả cao trong kỳ thi!

Nguồn: sytu.vn

Đọc Sách

Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Sóc Trăng
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Sóc Trăng. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Sóc Trăng : + Trong kỳ thi tuyển sinh lớp 10 năm học 2023 – 2024 của tỉnh Sóc Trăng, bạn An trúng tuyển thủ khoa nên được cha mẹ thưởng cho một chiếc điện thoại mới. Khi đến cửa hàng điện thoại An được tư vấn tiếu mua điện thoại kèm phụ kiện thì giá của phụ kiện sẽ được giảm giá 30% so với giá niêm yết ban đầu. Biết rằng tổng giá tiền điện thoại và phụ kiện ban đầu là 11500.000 đồng và nhờ mua hai thứ nên cha mẹ An chỉ phải trả tổng số tiền là 11 050 000 đồng. Hãy tính giá của chiếc điện thoại mà An được thưởng là bao nhiêu tiền? + Cho tam giác ABC vuông tại A, có đường cao AH và AB = 6cm, AC = 8cm. Gọi N là trung điểm của BC, kẻ NO vuông góc với AC tại O. a) Chứng minh AONH là tứ giác nội tiếp. b) Chứng minh CO.CA = CN.CH. c) Tính độ dài đường cao NI của tam giác NHO. Yêu cầu vẽ hình khi chứng minh. + Một bể cá cảnh hình cầu có bán kính bằng 9cm. Người ta cần đổ vào bể một lượng nước chiếm thể tích bể. Hỏi cần đổ bao nhiêu lít nước? (biết rằng 1l = 1 000 cm3 và lấy pi = 3,14).
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Vĩnh Phúc
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; kỳ thi được diễn ra vào ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Vĩnh Phúc : + Cho tam giác ABC vuông tại A, biết độ dài các cạnh AB = 6cm, AC = 8cm. Bán kính đường tròn ngoại tiếp tam giác ABC bằng? + Một hãng taxi công nghệ cao có giá cước (giá tiền khách hàng phải trả cho mỗi km) được tính theo các mức như sau: Mức 1: Giá mở cửa cho 1 km đầu tiên là 20000 đồng. Mức 2: Từ trên 1 km đến 25 km. Mức 3: Từ trên 25 km. Biết rằng anh A đi 32 km phải trả tiền taxi là 479500 đồng còn chị B đi 41 km phải trả 592000 đồng. Hỏi giá cước của hãng taxi trên ở mức 2 và mức 3 là bao nhiêu? Nếu khách hàng đi 24 km thì phải trả taxi bao nhiêu tiền? + Cho đường tròn (O) và BC là một dây cung khác đường kính của (O), A là điểm di động trên cung lớn BC sao cho AC > AB (A khác B). Gọi D là chân đường phân giác trong góc BAC (D thuộc BC). Đường thẳng đi qua O và vuông góc với BC cắt đường thẳng AD tại E. Kẻ EH, EK lần lượt vuông góc với AB và AC (H thuộc AB, K thuộc AC). a) Chứng minh EHAK là tứ giác nội tiếp. b) Gọi F là tâm đường tròn nội tiếp tam giác ABC. Chứng minh điểm E thuộc đường tròn (O) và E là tâm đường tròn ngoại tiếp tam giác BCF. c) Gọi M, N, I lần lượt là trung điểm của các đoạn thẳng AE, BE và BC. Chứng minh BMDN là tứ giác nội tiếp. Xác định vị trí điểm A để bốn điểm H, N, I, K thẳng hàng.
Đề tuyển sinh lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Hà Nội
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 THPT môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo thành phố Hà Nội; kỳ thi được diễn ra vào Chủ Nhật ngày 11 tháng 06 năm 2023; đề thi có đáp án và lời giải chi tiết. Trích dẫn Đề tuyển sinh lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Hà Nội : + Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình: Theo kế hoạch, một phân xưởng phải làm xong 900 sản phẩm trong một số ngày quy định. Thực tế, mỗi ngày phân xưởng đã làm được nhiều hơn 15 sản phẩm so với số sản phẩm phải làm một ngày theo kế hoạch. Vì thế 3 ngày trước khi hết thời hạn, phân xưởng đã làm xong 900 sản phẩm. Hỏi, theo kế hoạch, mỗi ngày phân xưởng phải làm bao nhiêu sản phẩm? (Giả định rẳng số sản phẩm mà phân xưởng làm được trong mỗi ngày là bằng nhau). + Một khối gỗ dạng hình trụ có bán kính đáy là 30cm và chiều cao là 120cm. Tính thể tích khối gỗ đó (lấy π ≈ 3,14). + Cho tam giác ABC có ba góc nhọn (AB < AC), nội tiếp đường tròn (O). Tiếp tuyến tại điểm A của đường tròn (O) cắt đường thẳng BC tại điểm S. Gọi I là chân đường vuông góc kẻ từ điểm O đến đường thẳng BC. 1. Chứng minh tứ giác SAOI nội tiếp. 2. Gọi H, D lần lượt là chân các đường vuông góc kẻ từ điểm A đến các đường thẳng SO, BC. Chứng minh OAH = IAD. 3. Vẽ đường cao CE của tam giác ABC. Gọi Q là trung điểm của đoạn thẳng BE. Đường thẳng QD cắt đường thẳng AH tại điểm K. Chứng minh BQ.BA = BD.BI và đường thẳng CK song song với đường thẳng SO.
Đề tuyển sinh vào lớp 10 môn Toán năm 2023 - 2024 sở GDĐT Thanh Hóa
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề chính thức kỳ thi tuyển sinh vào lớp 10 Trung học Phổ thông môn Toán năm học 2023 – 2024 sở Giáo dục và Đào tạo tỉnh Thanh Hóa. Trích dẫn Đề tuyển sinh vào lớp 10 môn Toán năm 2023 – 2024 sở GD&ĐT Thanh Hóa : + Trong mặt phẳng tọa độ Oxy, cho đường thẳng (d) có phương trình y = ax + b. Tìm a và b để đường thẳng (d) có hệ số góc bằng 3 và đi qua điểm M(-1;2). + Cho phương trình x2 − 2mx – m2 − 2 = 0 (m là tham số). Tìm các giá trị của m để phương trình có hai nghiệm x1, x2 (với x1 < x2) thỏa mãn hệ thức x2 − 2|x1| – 3x1x2 = 3m2 + 3m + 4. + Cho đường tròn (O) và một điểm M nằm ngoài đường tròn. Từ điểm M kẻ hai tiếp tuyến MA, MB đến (O) (với A và B là các tiếp điểm). Gọi C là điểm đối xứng với B qua O, đường thẳng MC cắt đường tròn (O) tại D (D khác C). 1. Chứng minh MAOB là tứ giác nội tiếp. 2. Gọi N là giao điểm của hai đường thẳng AD và MO. Chứng minh MN2 = ND.NA. 3. Gọi H là giao điểm của MO và AB. Chứng minh (HA/HD)^2 – AC/HN = 1.