Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề khảo sát HSG lớp 12 môn Toán năm 2020 2021 trường THPT Hưng Nhân Thái Bình

Nội dung Đề khảo sát HSG lớp 12 môn Toán năm 2020 2021 trường THPT Hưng Nhân Thái Bình Bản PDF Ngày 28 tháng 11 năm 2020, trường THPT Hưng Nhân, tỉnh Thái Bình tổ chức kỳ thi khảo sát chất lượng học sinh giỏi khối 12 môn Toán năm học 2020 – 2021. Đề khảo sát HSG Toán lớp 12 năm 2020 – 2021 trường THPT Hưng Nhân – Thái Bình mã đề 101 gồm 08 trang với 50 câu trắc nghiệm, thời gian làm bài 90 phút. Trích dẫn đề khảo sát HSG Toán lớp 12 năm 2020 – 2021 trường THPT Hưng Nhân – Thái Bình : + Một kim tự tháp Ai Cập được xây dựng khoảng 2500 năm trước công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 150 m, cạnh đáy dài 220 m. Hỏi diện tích xung quanh của kim tự tháp đó bằng bao nhiêu? (diện tích xung quanh của hình chóp là tổng diện tích của các mặt bên). + Ông An gửi 320 triệu đồng vào ngân hàng ACB và VietinBank theo phương thức lãi kép. Số tiền thứ nhất gửi vào ngân hàng ACB với lãi suất 2,1% một quý trong thời gian 15 tháng. Số tiền còn lại gửi vào ngân hàng VietinBank với lãi suất 0,73% một tháng trong thời gian 9 tháng. Biết tổng số tiền lãi ông An nhận được ở hai ngân hàng là 26670725,95 đồng. Hỏi số tiền ông An lần lượt ở hai ngân hàng ACB và VietinBank là bao nhiêu (số tiền được làm tròn tới hàng đơn vị)? A. 120 triệu đồng và 200 triệu đồng. B. 200 triệu đồng và 120 triệu đồng. C. 140 triệu đồng và 180 triệu đồng. D. 180 triệu đồng và 140 triệu đồng. + Giả sử trong trận chung kết AFF Cup 2018, đội tuyển Việt Nam phải phân định thắng thua trên chấm đá phạt 11 m. Biết xác suất để mỗi cầu thủ Việt Nam thực hiện thành công quả đá 11 m của mình đều là 0,8. Gọi p là xác suất để đội tuyển Việt Nam thực hiện thành công từ 4 quả trở lên trong 5 lượt sút đầu tiên. Khẳng định nào sau đây đúng? File WORD (dành cho quý thầy, cô):

Nguồn: sytu.vn

Đọc Sách

Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi lập đội tuyển dự thi chọn học sinh giỏi Quốc gia THPT môn Toán năm học 2022 – 2023 sở Giáo dục và Đạo tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 30/09/2022 (ngày thi thứ nhất) và 01/10/2022 (ngày thi thứ hai). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho tam giác ABC nhọn, không cân, có đường cao BE, CF cắt nhau tại H. Đường thẳng qua C song song với AB cắt BE tại M, đường thẳng qua B song song với AC cắt CF tại N. Điểm D là hình chiếu của H trên MN, I là trung điểm của BC. 1) Chứng minh AH, DI, EF đồng quy. 2) Gọi J là trung điểm của AH. Đường thẳng IJ cắt BE, CF lần lượt tại U, V. Đường tròn ngoại tiếp tam giác HUV và đường tròn ngoại tiếp tam giác AEF cắt nhau tại điểm T khác H. Chứng minh ba điểm A, T, I thẳng hàng. + Cho số nguyên dương n và số nguyên tố lẻ p. Biết p là ước của 3^2^n + 1, chứng minh p – 1 chia hết cho 2^(n + 1). + Cho 2n điểm phân biệt trong không gian (với n >= 2) sao cho trong chúng không có ba điểm nào thẳng hàng và không có bốn điểm nào cùng nằm trên một mặt phẳng. Xét n2 + 1 đoạn thẳng bất kì, mỗi đoạn có hai đầu mút là hai trong số 2n điểm trên. Chứng minh rằng có ít nhất một tam giác được tạo thành từ n2 + 1 đoạn thẳng trên.
Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 - 2023 sở GDĐT Yên Bái
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn học sinh giỏi cấp tỉnh môn Toán THPT năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Yên Bái; kỳ thi được diễn ra vào ngày 29 tháng 09 năm 2022. Trích dẫn Đề học sinh giỏi cấp tỉnh Toán THPT năm 2022 – 2023 sở GD&ĐT Yên Bái : + Cho hàm số y = (2x + 3)/(x + 3) có đồ thị (C) và đường thẳng d: y = -2x + m (m là tham số thực). Chứng minh rằng d cắt (C) tại hai điểm A, B phân biệt với mọi tham số thực m. Gọi k1, k2 lần lượt là hệ số góc của tiếp tuyến của (C) tại A và B. Tìm tất cả các giá trị của m để P = (k1)^2022 + (k2)^2022 đạt giá trị nhỏ nhất. + Cho đa giác (H) có 20 đỉnh nội tiếp một đường tròn. Chọn bốn đỉnh tùy ý của (H). Tính xác suất để chọn được bốn đỉnh tạo thành một tứ giác lồi có bốn cạnh đều là đường chéo của (H). + Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Hai mặt phẳng (SAB) và (SAC) cùng vuông góc với mặt phẳng đáy. Góc giữa SC và mặt phẳng (SAB) bằng 30°. Gọi M, N lần lượt là các điểm thuộc cạnh BC, CD sao cho BM = 2MC và CN = 2ND. 1) Tính thể tích khối chóp S.ABCD. 2) Tính khoảng cách giữa hai đường thẳng DM và SN.
Đề học sinh giỏi Toán 12 lần 1 năm 2022 - 2023 cụm liên trường THPT - Nghệ An
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi khảo sát chất lượng học sinh giỏi môn Toán 12 lần 1 năm học 2022 – 2023 cụm thi liên trường THPT trực thuộc sở Giáo dục và Đào tạo tỉnh Nghệ An. Trích dẫn Đề học sinh giỏi Toán 12 lần 1 năm 2022 – 2023 cụm liên trường THPT – Nghệ An : + Trong tiết học môn thể dục, giáo viên cho 20 học sinh đứng thành một vòng tròn để truyền đạt kiến thức, sau đó giáo viên gọi ngẫu nhiên bốn học sinh lên làm mẫu. Tính xác suất để trong bốn học sinh được gọi không có hai học sinh đứng cạnh nhau. + Một người thợ gò hàn làm một cái thùng đựng nước dạng hình hộp chữ nhật có nắp bằng tôn. Biết rằng đường chéo hình hộp bằng 6dm và chỉ được sử dụng vừa đủ 36dm2 tôn. Tính thể tích lớn nhất của cái thùng. + Cho lăng trụ đứng ABC.A’B’C’ có đáy là tam giác cân tại A và BAC = a. Gọi M là trung điểm của AA’, mặt phẳng (C’MB) tạo với đáy (ABC) góc b. Xác định hệ thức giữa a và b để tam giác C’MB là tam giác vuông.
Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 - 2023 sở GDĐT Thanh Hóa
giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 12 đề thi chọn đội tuyển dự thi học sinh giỏi Quốc gia môn Toán năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Thanh Hóa; kỳ thi được diễn ra trong hai ngày: 27/09/2022 (vòng 1) và 28/09/2022 (vòng 2). Trích dẫn Đề chọn đội tuyển thi HSG QG môn Toán năm 2022 – 2023 sở GD&ĐT Thanh Hóa : + Cho dãy số (xn) xác định bởi. Chứng minh rằng dãy số (yn) xác định bởi yn có giới hạn hữu hạn và tìm giới hạn đó. + Cho một nhóm 15 học sinh có chiều cao đôi một khác nhau gồm 5 học sinh nữ có chiều cao tăng dần ký hiệu lần lượt là G1, G2, G3, G4, G5 và 10 học sinh nam. Hỏi có bao nhiêu cách xếp 15 học sinh đó theo một hàng ngang sao cho tính từ trái sang phải thì các học sinh nữ có chiều cao tăng dần, các học sinh nam cũng có chiều cao tăng dần, giữa học sinh G1 và G2 có ít nhất 3 học sinh nam, giữa học sinh G4 và G5 có ít nhất 1 học sinh nam và nhiều nhất 3 học sinh nam. + Cho H là một lục giác đều có cạnh bằng 2022. Tồn tại hay không số nguyên dương n sao cho có một cách phân hoạch H thành n hình tam giác có cạnh không lớn hơn 2022 và tổng n tỉ số giữa độ dài cạnh ngắn nhất với độ dài cạnh dài nhất của mỗi tam giác đó không vượt quá?