Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề thi Olympic Toán 8 năm 2023 - 2024 phòng GDĐT Nghĩa Đàn - Nghệ An

THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 8 đề thi Olympic môn Toán 8 năm học 2023 – 2024 phòng Giáo dục và Đào tạo huyện Nghĩa Đàn, tỉnh Nghệ An. Trích dẫn Đề thi Olympic Toán 8 năm 2023 – 2024 phòng GD&ĐT Nghĩa Đàn – Nghệ An : + Cho tam giác ABC vuông tại A. Lấy một điểm M bất kỳ trên cạnh AC. Từ C vẽ một đường thẳng vuông góc với tia BM, đường thẳng này cắt tia BM tại D, cắt tia BA tại E. a) Chứng minh: EA.EB = ED.EC. b) Kẻ đường thẳng đi qua M cắt các cạnh EB, EC theo thứ tự ở P và Q sao cho MP = MQ. Gọi I là trung điểm của BC. Chứng minh rằng: MI vuông góc với PQ. + Ba bạn An, Giáp, Mai hẹn gặp nhau tại nhà bạn Giáp, biết rằng nhà bạn An ở vị trí A, nhà bạn Giáp ở vị trí G và nhà bạn Mai ở vị trí M (được mô tả như hình vẽ). Biết rằng tứ giác ABCD là hình vuông và M là trung điểm của CD. Quãng đường bạn Mai đi từ nhà tới nhà bạn Giáp là 2 km. Hỏi bạn An phải đi quãng đường ngắn nhất từ nhà tới nhà bạn Giáp là bao nhiêu kilômét để gặp Giáp và Mai? + Để lập đội tuyển năng khiếu về bóng chuyền của một trường thầy thể dục đưa ra quy định tuyển chọn như sau: Mỗi bạn dự tuyển sẽ được phát bóng 10 lần, lần phát bóng đạt yêu cầu được cộng 3 điểm; lần phát bóng không đạt yêu cầu thì bị trừ 2 điểm. Nếu bạn nào có số điểm từ 20 điểm trở lên thì sẽ được chọn vào đội tuyển. Hỏi một học sinh muốn được chọn vào đội tuyển thì phải phát bóng ít nhất bao nhiêu lần đạt yêu cầu?

Nguồn: toanmath.com

Đọc Sách

Đề chọn học sinh giỏi Toán 8 năm 2020 - 2021 phòng GDĐT Bắc Ninh
Ngày 11 tháng 01 năm 2021, phòng Giáo dục và Đào tạo thành phố Bắc Ninh, tỉnh Bắc Ninh tổ chức kì thi chọn học sinh giỏi (HSG) cấp thành phố môn Toán lớp 8 năm học 2020 – 2021. Đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh gồm 01 trang với 05 bài toán dạng tự luận, thời gian học sinh làm bài thi là 150 phút. Trích dẫn đề chọn học sinh giỏi Toán 8 năm 2020 – 2021 phòng GD&ĐT Bắc Ninh : + Đa thức f(x) chia cho x + 1 thì được dư là 5, nếu chia cho x2 + 1 thì được dư là x + 2. Tìm dư trong phép chia f(x) cho x3 + x2 + x + 1. + Tìm các số nguyên x, y thỏa mãn: 5x + 53 = 2xy + 8y^2. + Cho hình vuông ABCD, gọi E là điểm bất kỳ trên cạnh BC, tia AE cắt DC tại M, tia DE cắt AB tại N, BM cắt CN tại K, NC cắt AD tại I. 1. Chứng minh: BC^2 = BN.CM và BM vuông góc với CN. 2. Gọi Q là hình chiếu của I trên BC. Tính góc AKQ. 3. Xác định vị trí của E trên cạnh BC để chu vi tam giác BKC lớn nhất.
Đề giao lưu HSG Toán 8 năm 2018 - 2019 phòng GDĐT Chí Linh - Hải Dương
Đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương được biên soạn theo hình thức tự luận với 05 bài toán, học sinh có 150 phút để làm bài thi, kỳ thi nhằm giao lưu đội tuyển học sinh giỏi Toán 8 của các trường THCS trên địa bàn thành phố Chí Linh, tỉnh Hải Dương. Trích dẫn đề giao lưu HSG Toán 8 năm 2018 – 2019 phòng GD&ĐT Chí Linh – Hải Dương : + Chứng minh rằng không tồn tại số nguyên n thỏa mãn: (2014^2014 + 1) chia hết cho n^3 + 2012n. + Cho hình vuông ABCD, M là một điểm nằm giữa B và C. Kẻ AN vuông góc với AM, AP vuông góc với MN (N và P thuộc đường thẳng CD). a) Chứng minh tam giác AMN vuông cân. b) Chứng minh rằng: AN^2 = NC.NP. c) Gọi Q là giao điểm của tia AM và tia DC. Chứng minh tổng 1/AM^2 + 1/AQ^2 không đổi khi điểm M thay đổi trên cạnh BC. + Cho các số x, y không âm thay đổi và thỏa mãn x + y = 1. Tìm giá trị lớn nhất của biểu thức:Q = (4x^2 + 3y)(4y^2 + 3x) + 25xy.
Đề Olympic Toán 8 năm 2018 - 2019 phòng GDĐT TX Thái Hòa - Nghệ An
THCS. giới thiệu đến các em học sinh lớp 8 đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An, nhằm giao lưu và tuyển chọn các em học sinh giỏi Toán 8 đang học tập tại các trường THCS trên địa bàn Thị xã Thái Hòa, tỉnh Nghệ An. Đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An được biên soạn theo hình thức tự luận với 05 bài toán, học sinh làm bài trong 90 phút. Trích dẫn đề Olympic Toán 8 năm 2018 – 2019 phòng GD&ĐT TX Thái Hòa – Nghệ An : + Cho tam giác ABC vuông tại A, có trung tuyến AM, đường cao AH. Trên cùng nửa mặt phẳng bờ BC kẻ hai tia Ax và Cy cùng vuông góc với BC. Qua A kẻ đường thẳng vuông góc với AM cắt Bx và Cy lần lượt tại P và Q. Chứng minh: a) AP = BP và AQ = CQ. b) PC đi qua trung điểm I của AH. c) Khi BC cố định, BC = 2a, điểm A chuyển động sao cho BAC = 90°. Tìm vị trí điểm H trên đoạn thẳng BC để diện tích tam giác ABH đạt giá trị lớn nhất, tìm giá trị lớn nhất đó. [ads] + Cho phân thức: P = (n^3 + 2n^2 – 1)/(n^3 + 2n^2 + 2n + 1). a) Hãy tình điều kiện xác định và rút gọn phân thức trên. b) Chứng minh rằng nếu n là một số nguyên thì giá trị phân thức tìm được trong câu a luôn là một phân số tối giản. + Tìm đa thức f(x) biết: f(x) chia cho x – 2 dư 5; f(x) chia cho x – 3 dư 7; f(x) chia cho (x – 2)(x – 3) được thương là x^2 -1 và đa thức dư là đa thức bậc nhất đối với x.
Đề học sinh giỏi huyện Toán 8 năm 2018 - 2019 phòng GDĐT Nho Quan - Ninh Bình
THCS. giới thiệu đến quý thầy, cô giáo và các em học sinh đề học sinh giỏi huyện Toán 8 năm 2018 – 2019 phòng GD&ĐT Nho Quan – Ninh Bình; đề thi có đáp án, lời giải chi tiết và hướng dẫn chấm điểm.