Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phát triển các bài toán VD VDC trong đề thi TN THPT 2021 môn Toán (đợt 1)

Nội dung Phát triển các bài toán VD VDC trong đề thi TN THPT 2021 môn Toán (đợt 1) Bản PDF - Nội dung bài viết Phát triển bài toán VD VDC trong đề thi TN THPT 2021 môn Toán Phát triển bài toán VD VDC trong đề thi TN THPT 2021 môn Toán Strong Team Toán VD – VDC đã biên soạn tài liệu gồm 43 trang phát triển bài toán mức độ vận dụng – vận dụng cao trong đề thi chính thức tốt nghiệp Trung học Phổ thông năm 2021 môn Toán (đợt 1) – mã đề 101. Tài liệu này bao gồm các câu hỏi từ câu 36 đến câu 50, đề cập đến các bài toán phức tạp và thú vị. Trích dẫn một số bài toán trong tài liệu: Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng P: x/2 + y/2 + z/15 = 0. Gọi M là điểm di động trên P, N là điểm thuộc tia OM sao cho OM = ON = 10. Khoảng cách nhỏ nhất từ N đến mặt phẳng P bằng bao nhiêu? Cho hai hàm số f(x) = 4x^2 + ax + b và g(x) = cx^3 + dx^2 + 3. Biết rằng đồ thị của hàm số y = f(x) và y = g(x) cắt nhau tại hai điểm có hoành độ lần lượt là -2 và 1. Hình phẳng giới hạn bởi hai đồ thị đã cho có diện tích bằng bao nhiêu? Trong tập số phức, cho phương trình m^2z^2 + m^3z - m = 0. Có bao nhiêu giá trị nguyên của m trong đoạn [0, 2021] để phương trình có 2 nghiệm phân biệt z1 và z2 thỏa mãn z1 + z2 = 1? Cho hình trụ đứng có hai đáy là hai đường tròn tâm O và tâm O', bán kính bằng a, chiều cao hình trụ bằng 2a. Mặt phẳng đi qua trung điểm OO' và tạo với OO' một góc 30 độ, cắt đường tròn đáy tâm O theo dây cung AB. Độ dài đoạn AB là bao nhiêu? Tài liệu này không chỉ hữu ích cho các em học sinh tham dự kỳ thi tốt nghiệp THPT môn Toán đợt 2 năm 2021 mà còn giúp các thầy cô giáo tham khảo và sử dụng trong các năm học sau.

Nguồn: sytu.vn

Đọc Sách

Bài toán thực tế liên quan đến hình học - Nguyễn Bá Hoàng
Tài liệu gồm 45 trang với các bài toán thực tế liên quan đến hình học thường xoay quanh một số nội dung như sau: Tính toán để đường đi được ngắn nhất, tính toán để diện tích được lớn nhất, hay cũng có thể đơn giản là tính diện tích hoặc thể tích của một vật. A. Nội dung kiến thức 1. Công thức tính chu vi, diện tích của các hình, thể tích của các khối hình 2. Cách tìm giá trị lớn nhất, nhỏ nhất của hàm số trên một đoạn, khoảng, nửa đoạn, nửa khoảng 3. Ứng dụng của tích phân trong việc tính diện tích hình phẳng, tính thể tích của khối tròn xoay B. Ví dụ minh hoạ: Gồm 17 ví dụ minh họa có phân tích và lời giải chi tiết C. Bài tập đề nghị: Gồm 83 bài toán trắc nghiệm thực tế liên quan đến hình học D. Hướng dẫn, đáp án [ads]
Bài toán thực tế và bài toán tối ưu min - max - Lê Viết Nhơn
Tài liệu gồm 23 trang tuyển chọn các bài toán thực tế và bài toán tối ưu min – max do thầy Lê Viết Nhơn sưu tầm và biên soạn, với nội dung gồm các phần: + Phần 1. Bài toán thực tế tối ưu+ Phần 2. Các bài toán thực tế liên quan đến tích phân + Phần 3. Bài toán thực tế liên quan đến mũ và lôgarit + Phần 4. Bài tập rèn luyện trích từ đề thi thử các trường THPT [ads] Trích dẫn tài liệu : + Một tấm kẽm hình vuông ABCD có cạnh bằng 30 cm. Người ta gập tấm kẽm theo hai cạnh EF và GH cho đến khi AD và BC trùng nhau như hình vẽ dưới đây để được một hình lăng trụ khuyết hai đáy. + Cho một tam giác đều ABC cạnh a. Người ta dựng một hình chữ nhật MNPQ có cạnh MN nằm trên cạnh BC, hai đỉnh P và Q theo thứ tự nằm trên hai cạnh AC và AB của tam giác. Xác định vị trí của điểm M sao cho hình chữ nhật có diện tích lớn nhất và tìm giá trị lớn nhất đó. + Khi nuôi cá thí nghiệm trong hồ, một nhà sinh vật học thấy rằng: Nếu trên mỗi đơn vị diện tích mặt hồ có n con cá thì trung bình mỗi con cá sau một vụ cân nặng P(n) = 480 – 20n gam. Hỏi phải thả bao nhiêu cá trên một đơn vị diện tích của mặt hồ để sau một vụ thu hoạch được nhiều cá nhất?
Hướng dẫn ôn tập kỳ thi THPT Quốc gia 2016 - 2017 môn Toán - Đoàn Quỳnh
Sách gồm 246 trang với 2 phần: + Phần 1. Ôn tập theo chủ đề. Phần này ôn lại những kiến thức, kỹ năng cần thiết cùng một số câu trắc nghiệm theo 7 chủ đề chương trình Toán 12. + Phần 2. Một số đề tự luyện, đưa ra 9 đề, được biên soạn phỏng theo đề minh họa của Bộ GD và ĐT đã được công bố. Sách do Nhà xuất bản Giáo dục Việt Nam phát hành. [ads]
Tiếp cận 11 chuyên đề trọng tâm giải nhanh trắc nghiệm Toán - Trần Công Diêu
Sách gồm 449 trang với 11 chuyên đề: + Chuyên đề 1. Ứng dụng đạo hàm + Chuyên đề 2. Hàm số lũy thừa, mũ và logarit + Chuyên đề 3. Nguyên hàm, tích phân và ứng dụng + Chuyên đề 4. Số phức + Chuyên đề 5. Hình học không gian + Chuyên đề 6. Phương pháp tọa độ trong không gian + Chuyên đề 7. Lượng giác + Chuyên đề 8. Đại số tổ hợp và xác suất + Chuyên đề 9. Giới hạn, liên tục + Chuyên đề 10. Hình học Oxy + Chuyên đề 11. Phương trình, bất phương trình đại số [ads]