Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Dãy số và các bài toán về dãy số

Tài liệu gồm 217 trang, trình bày lý thuyết và hướng dẫn giải một số bài toán nâng cao thuộc chuyên đề dãy số và các bài toán về dãy số, giúp học sinh bồi dưỡng kiến thức học sinh giỏi môn Toán bậc THPT, để chuẩn bị cho kỳ thi HSG Toán THPT các cấp: cấp tỉnh, cấp quốc gia, cấp quốc tế. Mục lục tài liệu dãy số và các bài toán về dãy số: 1 Dãy số và các bài toán về dãy số. 1.1 Giới thiệu. 1.2 Định nghĩa và các định lý cơ bản. 1.3 Một số phương pháp giải bài toán về dãy số. 1.3.1 Dãy số thực: một số dạng dãy số đặc biệt. 1.3.2 Dãy số nguyên. 1.3.3 Dãy số và phương trình. 1.3.4 Một vài thủ thuật khác. 1.4 Một số phương pháp xây dựng hệ thống bài tập. 1.4.1 Xây dựng dãy hội tụ bằng phương trình. 1.4.2 Xây dựng dãy truy hồi từ cặp nghiệm của phương trình bậc hai. 1.4.3 Xây dựng các dãy số nguyên từ lời giải các phương trình nghiệm nguyên. 1.4.4 Xây dựng dãy số là nghiệm của một họ phương trình phụ thuộc biến n. 1.5 Lý thuyết dãy số dưới con mắt toán cao cấp. 1.5.1 Rời rạc hóa các khái niệm và định lý của lý thuyết hàm biến số thực. 1.5.2 Phương pháp hàm sinh và bài toán tìm số hạng tổng quát. 1.5.3 Đại số tuyến tính và phương trình sai phân. 1.5.4 Sử dụng xấp xỉ trong dự đoán kết quả. 1.6 Bài tập. 2 Phương trình sai phân. 2.1 Sai phân. 2.1.1 Định nghĩa. 2.1.2 Tính chất. 2.2 Phương trình sai phân tuyến tính. 2.2.1 Một số khái niệm chung về phương trình sai phân. 2.3 Phương trình sai phân tuyến tính bậc nhất. 2.3.1 Định nghĩa. 2.3.2 Phương pháp giải. 2.3.3 Phương pháp tìm nghiệm riêng của phương trình sai phân tuyến tính cấp 1 không thuần nhất khi vế phải f(n) có dạng đặc biệt. 2.3.4 Bài tập. 2.4 Phương trình sai phân tuyến tính cấp 2. 2.4.1 Định nghĩa. 2.4.2 Cách giải. 2.5 Phương trình sai phân tuyến tính cấp 3. 2.5.1 Định nghĩa. 2.5.2 Phương pháp giải. 2.5.3 Ví dụ. 2.5.4 Phương trình sai phân tuyến tính cấp k. 3 Xác định số hạng tổng quát của một dãy số. 3.1 Tìm số hạng tổng quát của dãy (dạng đa thức) khi biết các số hạng đầu tiên. 3.2 Công thức truy hồi là một biểu thức tuyến tính. 3.2.1 Ví dụ. 3.3 Công thức truy hồi là một hệ biểu thức tuyến tính. 3.3.1 Ví dụ. 3.4 Công thức truy hồi là biểu thức tuyến tính với hệ số biến thiên. 3.5 Công thức truy hồi dạng phân tuyến tính với hệ số hằng. 3.6 Hệ thức truy hồi phi tuyến. 3.6.1 Quy trình tuyến tính hoá một phương trình sai phân. 3.6.2 Ví dụ. 3.6.3 Một số ví dụ khác. 3.6.4 Bài tập. 4 Phương trình hàm sai phân bậc hai. 4.1 Hàm tuần hoàn và phản tuần hoàn cộng tính. 4.2 Phương trình hàm sai phân bậc hai với hàm tuần hoàn và phản tuần hoàn. 4.3 Phương trình với hàm số tuần hoàn, phản tuần hoàn nhân tính. 4.3.1 Định nghĩa. 4.3.2 Một số bài toán. 4.3.3 Một số ví dụ áp dụng. 5 Dãy số sinh bởi hàm số. 5.1 Hàm số chuyển đổi phép tính số học và đại số. 5.2 Về các dãy số xác định bởi dãy các phương trình. 5.3 Định lý về ba mệnh đề tương đương. 5.4 Một số bài toán về ước lượng tổng và tích. 5.5 Bài tập. 6 Một số lớp hàm chuyển đổi các cấp số. 6.1 Cấp số cộng, cấp số nhân và cấp số điều hoà. 6.2 Dãy số tuần hoàn. 6.3 Hàm số chuyển đổi cấp số cộng. 6.4 Hàm số chuyển đổi cấp số cộng vào cấp số nhân. 6.5 Hàm số chuyển đổi cấp số nhân vào cấp số cộng. 6.6 Hàm số chuyển đổi cấp số nhân vào cấp số điều hoà. 7 Một số lớp hàm chuyển đổi các cấp số trong tập rời rạc. 7.1 Hàm số chuyển đổi cấp số cộng thành cấp số cộng. 7.2 Hàm số chuyển đổi cấp số nhân thành cấp số nhân. 8 Một số bài toán xác định dãy số trong lớp dãy tuần hoàn cộng tính và nhân tính. 8.1 Một số bài toán xác định dãy số trong lớp dãy tuần hoàn cộng tính. 8.2 Hàm số xác định trên tập các số nguyên. 8.2.1 Hàm số chuyển đổi các phép tính số học. 8.2.2 Hàm số chuyển tiếp các đại lượng trung bình. 8.2.3 Phương trình trong hàm số với cặp biến tự do. 8.2.4 Một số dạng toán liên quan đến dãy truy hồi. 8.3 Hàm số xác định trên tập các số hữu tỷ. 8.4 Phương trình trong hàm số với cặp biến tự do. 8.5 Sử dụng giới hạn để giải phương trình hàm. Tài liệu tham khảo. Xem thêm : + Phương pháp xác định công thức tổng quát của dãy số – Nguyễn Tất Thu + Tìm số hạng tổng quát của dãy số bằng phương pháp sai phân – Mai Xuân Việt

Nguồn: toanmath.com

Đọc Sách

Trắc nghiệm nâng cao dãy số, cấp số cộng và cấp số nhân - Đặng Việt Đông
Tài liệu trắc nghiệm nâng cao dãy số, cấp số cộng và cấp số nhân được biên soạn bởi thầy Đặng Việt Đông gồm 52 trang tuyển tập các câu hỏi và bài tập trắc nghiệm chủ đề dãy số, cấp số cộng và cấp số nhân có đáp án và lời giải chi tiết trong chương trình Đại số và Giải tích 11 chương 3, các câu hỏi và bài tập trong tài liệu có độ khó cao và được trích dẫn từ các đề thi thử môn Toán, nhằm giúp học sinh ôn luyện chuẩn bị cho kỳ thi THPT Quốc gia môn Toán.
Chuyên đề quy nạp toán học, dãy số, cấp số cộng và cấp số nhân - Nguyễn Bảo Vương
Tài liệu gồm 123 trang gồm tóm tắt lý thuyết SGK, phân dạng, hướng dẫn giải, bài tập trắc nghiệm và tự luận các chủ đề: phương pháp quy nạp toán học, dãy số, cấp số cộng và cấp số nhân trong chương trình Đại số và Giải tích 11 chương 3. Các bài tập trắc nghiệm có đáp án và bài tập tự luận được giải chi tiết, bài tập được sắp xếp theo thứ tự các mức độ nhận thức: nhận biết, thông hiểu, vận dụng dụng thấp và vận dụng cao. Tài liệu được biên soạn bởi thầy Nguyễn Bảo Vương. 1. PHƯƠNG PHÁP QUY NẠP TOÁN HỌC Vấn đề 1 . Dùng quy nạp để chứng minh đẳng thức. Bất đẳng thức Phương pháp: Giả sử cần chứng minh đẳng thức P(n) = Q(n) (hoặc P(n) > Q(n)) đúng với mọi n ≥ n0 (n0 ∈ N), ta thực hiện các bước sau: + Bước 1: Tính P(n0), Q(n0) rồi chứng minh P(n0) = Q(n0). + Bước 2: Giả sử P(k) = Q(k), k ∈ N, k ≥ n0, ta cần chứng minh P(k + 1) = Q(k + 1) Vấn đề 2 . Ứng dụng phương pháp quy nạp trong số học và trong hình học 2. DÃY SỐ Vấn đề 1 . Xác định số hạng của dãy số Vấn đề 2 . Dãy số đơn điệu – Dãy số bị chặn Phương pháp: Để xét tính đơn điệu của dãy số (un) ta xét: kn = un+1 – un + Nếu kn > 0 ∀n ∈ N* ⇒ dãy (un) tăng. + Nếu kn < 0 ∀n ∈ N* ⇒ dãy (un) giảm. Khi un > 0 ∀n ∈ N*, ta có thể xét: tn = un+1/un + Nếu tn > 1 ∀n ∈ N* ⇒ dãy (un) tăng. + Nếu tn < 1 ∀n ∈ N* ⇒ dãy (un) giảm. Để xét tính bị chặn của dãy số ta có thể dự đoán rồi chứng minh bằng quy nạp. [ads] 3. CẤP SỐ CỘNG – CẤP SỐ NHÂN Vấn đề 1 . Xác định cấp số và xác yếu tố của cấp số Dãy số (un) là một cấp số cộng ⇔ un+1 – un = d không phụ thuộc vào n và d là công sai. Dãy số (un) là một cấp số nhân ⇔ un+1/un = q không phụ thuộc vào n và q là công bội. Ba số a, b, c theo thứ tự đó lập thành cấp số cộng ⇔ a + c = 2b. Ba số a, b, c theo thứ tự đó lập thành cấp số nhân ⇔ a.c = b^2. Để xác định một cấp số cộng, ta cần xác định số hạng đầu và công sai. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và d. Để xác định một cấp số nhân, ta cần xác định số hạng đầu và công bội. Do đó, ta thường biểu diễn giả thiết của bài toán qua u1 và q. Vấn đề 2 . Chứng minh tính chất của cấp số Phương pháp: Sử dụng công thức tổng quát của cấp số, chuyển các đại lượng qua số hạng đầu và công sai, công bội. Sử dụng tính chất của cấp số. Vấn đề 3 . Tìm điều kiện để dãy số lập thành cấp số
Các dạng toán phương pháp quy nạp toán học, dãy số, cấp số cộng và cấp số nhân - Trần Quốc Nghĩa
Tài liệu gồm 64 trang phân dạng, hướng dẫn phương pháp giải và tuyển chọn các bài tập trắc nghiệm, tự luận chuyên đề phương pháp quy nạp toán học, dãy số, cấp số cộng và cấp số nhân thuộc chương 3 Đại số và Giải tích 11, tài liệu do thầy Trần Quốc Nghĩa biên soạn, các bài tập trắc nghiệm có đáp án. Nội dung tài liệu : Vấn đề 1. PHƯƠNG PHÁP QUY NẠP TOÁN HỌC + Dạng 1. Chứng minh đẳng thức bằng phương pháp quy nạp + Dạng 2. Chứng minh các bài toán chia hết bằng phương pháp quy nạp + Dạng 3. [Nâng cao] Chứng minh các bài toán bất đẳng thức bằng phương pháp quy nạp Vấn đề 2. DÃY SỐ + Dạng 1. Mở đầu về dãy số + Dạng 2. Xác định công thức của dãy số (un ) + Dạng 3. Sử dụng phương pháp quy nạp chứng minh dãy số thỏa mãn tính chất K + Dạng 4. Xét tính tăng, giảm (hay tính đơn điệu) và bị chặn của một dãy số BÀI TẬP TỔNG HỢP CHỦ ĐỀ 2 BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 2 [ads] Vấn đề 3. CẤP SỐ CỘNG + Dạng 1. Chứng minh ba số (dãy số) lập thành một cấp số cộng + Dạng 2. Xác định số hạng tổng quát của một cấp số cộng + Dạng 3. Tìm các phần tử của một cấp số cộng + Dạng 4. Ứng dụng các tính chất của một cấp số cộng + Dạng 5. Tính tổng BÀI TẬP TỔNG HỢP CHỦ ĐỀ 3 BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 3 Vấn đề 4. CẤP SỐ NHÂN + Dạng 1. Tìm các phần tử của một cấp số nhân + Dạng 2. Xác định số hạng tổng quát của một cấp số nhân + Dạng 3. Ứng dụng các tính chất của một cấp số nhân + Dạng 4. Chứng minh ba số (dãy số) lập thành một cấp số nhân + Dạng 5. Tính tổng BÀI TẬP TỔNG HỢP CHỦ ĐỀ 4 BÀI TẬP TRẮC NGHIỆM CHỦ ĐỀ 4
Đi tìm công thức tổng quát của dãy số - Trần Duy Sơn
Việc biết được công thức tổng quát của một dãy số là một đòi hỏi quan trọng trong việc giải các bài toán về dãy số, từ công thức tổng quát chúng ta có thể có “cái nhìn tường minh” về dãy số đó, tính nhanh được các số hạng trong dãy cũng như thấy được các tính chất của dãy số để vận dụng vào các bài toán khác … Tài liệu gồm 21 trang hướng dẫn tìm công thức tổng quát của dãy số thông qua phân tích cách giải một số bài toán tổng quát thường gặp, để từ đó có thể vận dụng vào các trường hợp cụ thể. Nội dung tài liệu : + Đi tìm công thức tổng quát dãy số + Phương trình sai phân tuyến tính + Sử dụng phép thế lượng giác để xác định CTTQ dãy số + Các bài toán dãy số chọn lọc + Bài tập đề nghị + Tài liệu tham khảo [ads] Bạn đọc có thể xem thêm một số tài liệu hướng dẫn tìm công thức tổng quát của dãy số khác bên dưới: + Cách tìm công thức tổng quát của dãy số cho bởi công thức truy hồi – Phạm Thị Thu Huyền + Phương pháp xác định công thức tổng quát của dãy số – Nguyễn Tất Thu + Tìm số hạng tổng quát của dãy số bằng phương pháp sai phân – Mai Xuân Việt