Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Đề học sinh giỏi Toán 11 chuyên năm 2022 - 2023 sở GDĐT Vĩnh Phúc

giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán 11 THPT chuyên năm học 2022 – 2023 sở Giáo dục và Đào tạo tỉnh Vĩnh Phúc; đề thi hình thức tự luận, gồm 01 trang với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian giao đề). Trích dẫn Đề học sinh giỏi Toán 11 chuyên năm 2022 – 2023 sở GD&ĐT Vĩnh Phúc : + Có n (n ≥ 2) đội bóng tham gia một giải đấu bóng đá theo thể thức đá vòng tròn một lượt. Mỗi trận có kết quả là hòa hoặc phân thắng thua. Nếu kết quả hoà thì mỗi đội đều được 1 điểm. Nếu kết quả phân thắng thua thì đội thắng được 3 điểm, đội thua được 0 điểm. Gọi h là hiệu số điểm của đội đứng đầu bảng và đội đứng cuối bảng. Nếu chỉ xét các tình huống sau khi giải đấu kết thúc không có hai đội nào bằng điểm nhau thì giá trị nhỏ nhất có thể của h là bao nhiêu trong các trường hợp: a. Số đội tham dự là n = 3. b. Số đội tham dự là n = 42. + Cho P x là đa thức bậc 2023 với các hệ số thực không âm. Giả sử abc là độ dài ba cạnh của một tam giác nhọn. Chứng minh rằng các số 2023 2023 2023 Pa Pb Pc cũng là độ dài ba cạnh của một tam giác nhọn. + Cho đường tròn (O) và dây cung BC cố định trên (O). Một điểm A thay đổi trên (O) sao cho tam giác ABC nhọn và AB BC. Các đường cao AD BE CF của tam giác ABC cắt nhau tại H. Gọi M N lần lượt là trung điểm của AC và BC. Gọi Q là điểm đối xứng với B qua O. Đường thẳng QM cắt BC tại P và cắt (O) tại R. Đường tròn ngoại tiếp tam giác BRP cắt BQ tại S. a. Chứng minh CH là trục đẳng phương của các đường tròn đường kính BM và AN. b. Chứng minh các điểm SFR thẳng hàng và đường thẳng MF đi qua một điểm cố định khi A thay đổi.

Nguồn: toanmath.com

Đọc Sách

Đề học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hà Nam
Nội dung Đề học sinh giỏi lớp 11 môn Toán cấp tỉnh năm 2022 2023 sở GD ĐT Hà Nam Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi môn Toán lớp 11 THPT cấp tỉnh năm học 2022 – 2023 sở Giáo dục và Đào tạo UBND tỉnh Hà Nam; đề thi hình thức tự luận với 05 bài toán, thời gian làm bài 180 phút (không kể thời gian phát đề); kỳ thi được diễn ra vào thứ Ba ngày 07 tháng 03 năm 2023. Trích dẫn Đề học sinh giỏi Toán lớp 11 cấp tỉnh năm 2022 – 2023 sở GD&ĐT Hà Nam : + Cho đa giác đều có 2n đỉnh (n ≥ 2 và n thuộc N). Biết rằng, từ 2n đỉnh của đa giác đều đã cho ta lập được 2520 tam giác vuông. Tìm số cạnh của đa giác đều đã cho. + Ba bạn A, B, C mỗi bạn viết ngẫu nhiên lên bảng một số tự nhiên thuộc đoạn [1;22]. Tính xác suất để ba số viết ra có tổng chia hết cho 3. + Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi M là trung điểm của BC, điểm N thay đổi thuộc cạnh AC. Biết mặt phẳng (A’BN) luôn cắt AC’ và AM lần lượt tại hai điểm P và Q. Xác định vị trí của N để diện tích của tam giác APQ bằng 2/9 lần diện tích của tam giác AMC’.
Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường THPT Phùng Khắc Khoan Hà Nội
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường THPT Phùng Khắc Khoan Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi văn hóa cấp trường môn Toán lớp 11 năm học 2022 – 2023 trường THPT Phùng Khắc Khoan, huyện Thạch Thất, thành phố Hà Nội; đề thi có đáp án, lời giải chi tiết và thang chấm điểm. Trích dẫn Đề học sinh giỏi Toán lớp 11 năm 2022 – 2023 trường THPT Phùng Khắc Khoan – Hà Nội : + Tìm phương trình parabol P 2 y ax bx c biết rằng P đi qua ba điểm A B C như hình vẽ. + Trong mọi tam giác ABC, gọi a, b, c lần lượt là độ dài các cạnh BC, AC, AB và S là diện tích tam giác ABC. Chứng minh rằng: 2 2 2 cot cot cot 4 a b c A B C S. + Cho phương trình 2 2 4 4 5 4 2 1 x x x x m. Tìm tất cả các giá trị của tham số m để phương trình có bốn nghiệm thực phân biệt.
Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường Nguyễn Đăng Đạo Bắc Ninh
Nội dung Đề học sinh giỏi lớp 11 môn Toán năm 2022 2023 trường Nguyễn Đăng Đạo Bắc Ninh Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề thi chọn học sinh giỏi cấp trường môn Toán lớp 11 năm học 2022 – 2023 trường THPT Nguyễn Đăng Đạo, tỉnh Bắc Ninh; đề thi gồm 01 trang với 09 bài toán hình thức tự luận, thời gian làm bài 150 phút (không kể thời gian phát đề). Trích dẫn Đề học sinh giỏi Toán lớp 11 năm 2022 – 2023 trường Nguyễn Đăng Đạo – Bắc Ninh : + Trong một bài kiểm tra trắc nghiệm Tiếng Anh có 50 câu. Mỗi câu có 4 phương án trả lời A, B, C, D, trong đó chỉ có một phương án đúng. Mỗi câu trả lời đúng được cộng 0, 2 điểm và mỗi câu trả lời sai bị trừ 0,1 điểm. Bạn Hoa học rất kém môn Tiếng Anh nên chọn ngẫu nhiên cả 5 0 câu trả lời. Tính xác suất để bạn Hoa được 4 điểm bài kiểm tra Tiếng Anh đó. + Cho khai triển 2 01 2 1 2 … n n n x a ax ax ax trong đó n và các hệ số thỏa mãn hệ thức 1 0 … 4096 2 2 n n a a a. Tìm hệ số lớn nhất trong khai triển trên? + Cho hình chóp S ABCD đáy là hình bình hành tâm O, M là một điểm di động trên cạnh SC. a. Khi M là trung điểm của SC chứng minh rằng MO SAB. b. Khi M thay đổi vị trí trên cạnh SC mặt phẳng P qua AM và song song với BD cắt SB SD lần lượt tại H và K. Chứng minh rằng SB SD SC SH SK SM có giá trị không đổi. File WORD (dành cho quý thầy, cô):
Đề chọn đội tuyển lớp 11 môn Toán năm 2022 2023 trường THPT Chu Văn An Hà Nội
Nội dung Đề chọn đội tuyển lớp 11 môn Toán năm 2022 2023 trường THPT Chu Văn An Hà Nội Bản PDF Sytu giới thiệu đến quý thầy, cô giáo và các em học sinh lớp 11 đề chọn đội tuyển học sinh giỏi môn Toán lớp 11 năm học 2022 – 2023 trường THPT Chu Văn An, thành phố Hà Nội; kỳ thi được diễn ra vào ngày 15 tháng 10 năm 2022. Trích dẫn Đề chọn đội tuyển Toán lớp 11 năm 2022 – 2023 trường THPT Chu Văn An – Hà Nội : + Cho hàm số y = x3 + 2mx2 − 3x (1) và đường thẳng d: y – mx + 2 = 0 (với m là tham số). Tìm m để đường thẳng d và đồ thị hàm số (1) cắt nhau tại ba điểm phân biệt A, B, C sao cho diện tích tam giác OBC bằng 5 (với A là điểm có hoành độ không đổi và O là gốc toạ độ). + Cho tứ diện SABC có AB = AC = a, BC = a/2, SA = a3 (a > 0). Biết góc SAB = 30 và góc SAC = 30. Tính thể tích khối tứ diện theo a. + Chứng minh rằng nếu một tứ diện có độ dài một cạnh lớn hơn 1, độ dài các cạnh còn lại đều không lớn hơn 1 thì thể tích của khối tứ diện đó không lớn hơn 1/8.