Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Phân loại dạng và phương pháp giải nhanh nguyên hàm - tích phân - Nguyễn Vũ Minh (Tập 1)

Tài liệu gồm 75 trang bao gồm lý thuyết, công thức nguyên hàm, phân dạng và bài tập nguyên hàm – tích phân có đáp án, tài liệu do thầy Nguyễn Vũ Minh biên soạn. Trích dẫn tài liệu : + F(x) và G(x) là các nguyên hàm của hàm số f(x) trên khoảng (a,b). Khi đó: (I) F(x) = G(x) + C (II) G(x) = F(x) + C Với C là một hằng số nào đó. Khẳng định nào sau đây là đúng? A. (I) đúng, (II) sai B. (I) sai, (II) đúng C. Cả (I) và (II) đều đúng D. Cả (I) và (II) đều sai [ads] + Nguyên hàm của hàm số: y = cos2x/[(sinx)^2.(cosx)^2]^2 là? A. tanx – cotx + C B. -tanx – cotx + C C. tanx + cotx + C D. cotx – tanx + C + Cho hàm số f(x) = sinx + cos2x. Tìm nguyên hàm F(x) của hàm số f(x) biết F(π/2) = π/2

Nguồn: toanmath.com

Đọc Sách

Chuyên đề trắc nghiệm ứng dụng tích phân tính diện tích
Tài liệu gồm 45 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề ứng dụng tích phân tính diện tích, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. A. LÝ THUYẾT. 1. Công thức tính diện tích của hình phẳng giới hạn bởi hai đồ thị hàm số. 2. Ứng dụng tính diện tích hình tròn và hình Elip. B. VÍ DỤ MINH HỌA. C. BÀI TẬP TỰ LUYỆN. D. LỜI GIẢI CHI TIẾT.
Chuyên đề trắc nghiệm tích phân đặc biệt và nâng cao
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân đặc biệt và nâng cao, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. 1. Một số dạng tích phân đặc biệt. + Mệnh đề 1: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a a 0 f (x) dx 2 f (x) dx. + Mệnh đề 2: Nếu f(x) là hàm số lẻ và liên tục trên đoạn [−a;a] thì a a f (x) dx 0. + Mệnh đề 3: Nếu f(x) là hàm số chẵn và liên tục trên đoạn [−a;a] thì a a x a 0 f(x) dx f (x) dx m 1. + Mệnh đề 4: Nếu f(x) là hàm số liên tục trên [0;1] thì 2 2 0 0 f (sinx) dx f (cosx) dx. 2. Một số dạng tích phân vận dụng cao. + Dạng 1. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 2. Bài toán tích phân liên quan đến các biểu thức sau. + Dạng 3. Bài toán tổng quát. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.
Chuyên đề trắc nghiệm tích phân hàm hữu tỉ và hàm lượng giác
Tài liệu gồm 21 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề tích phân hàm hữu tỉ và hàm lượng giác, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3.
Chuyên đề trắc nghiệm công thức từng phần tính tích phân
Tài liệu gồm 20 trang, trình bày lý thuyết trọng tâm, các dạng toán trọng tâm kèm phương pháp giải và bài tập trắc nghiệm tự luyện chuyên đề công thức từng phần tính tích phân, có đáp án và lời giải chi tiết; hỗ trợ học sinh lớp 12 trong quá trình học tập chương trình Toán 12 phần Giải tích chương 3. I. LÝ THUYẾT TRỌNG TÂM. II. CÁC DẠNG TOÁN TRỌNG TÂM VÀ PHƯƠNG PHÁP GIẢI. Dạng 1: Sử dụng công thức tích phân từng phần. Dạng 2: Tích phân từng phần với hàm ẩn. Dạng 3: Sử dụng bất đẳng thức tích phân. BÀI TẬP TỰ LUYỆN. LỜI GIẢI BÀI TẬP TỰ LUYỆN.