Liên hệ: 0912 699 269  Đăng nhập  Đăng ký

Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3)

Nội dung Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3) Bản PDF - Nội dung bài viết Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3) Ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán (Đề 3) Dưới đây là đề thi số 3 trong loạt đề ôn luyện các nhóm câu hỏi vận dụng cao trong đề thi THPTQG môn Toán, nhằm chuẩn bị cho kỳ thi THPT Quốc gia năm 2019. Đề thi này được biên soạn bởi nhóm Chinh Phục Olympic Toán, được trích dẫn từ các đề thi thử THPT Quốc gia môn Toán của các trường THPT, sở GD&ĐT. Đề bao gồm 60 bài toán trắc nghiệm, có phân tích và lời giải chi tiết, với mức độ khó và rất khó. Dưới đây là một số câu hỏi đặc biệt trong đề thi: 1. Tìm tập hợp giá trị của tham số m sao cho diện tích tam giác IAB đạt giá trị lớn nhất trong bài toán hình học. 2. Xác định xác suất để chọn được một số có dạng a1a2a3a4a5 từ tập hợp các số có 5 chữ số phân biệt được lập từ tập A. 3. Tính giá trị nhỏ nhất của thể tích khối chóp S.ABCD trong bài toán hình học, khi cosin góc giữa đường thẳng SB và mặt phẳng (ABCD) được xác định. Những câu hỏi này đều đòi hỏi sự tập trung, logic và kiến thức sâu rộng về môn Toán. Hy vọng rằng việc ôn luyện thông qua các đề thi này sẽ giúp các bạn học sinh chuẩn bị tốt cho kỳ thi sắp tới. Chúc các bạn thành công!

Nguồn: sytu.vn

Đọc Sách

Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán
Nội dung Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán Bản PDF - Nội dung bài viết Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tài liệu "Kiến thức và kinh nghiệm làm bài qua các kì thi Đại học môn Toán" Tác giả Nguyễn Phú Khánh, Võ Bá Quốc Cẩn và Trần Quốc Anh đã tạo ra một tài liệu đầy ý nghĩa và hữu ích dành cho những ai đang chuẩn bị cho kỳ thi Đại học môn Toán. Tài liệu này được scan từ sách gốc, có tổng cộng 271 trang, chứa đựng những kiến thức quý báu và kinh nghiệm thực tiễn trong việc giải các bài toán trong đề thi quốc gia hiện nay. Bằng việc nghiên cứu tài liệu này, bạn đọc sẽ được hướng dẫn cách trình bày bài toán một cách logic và hiệu quả, từ đó nâng cao khả năng làm bài thi của mình. Tác giả hy vọng rằng tài liệu sẽ giúp ích cho các thí sinh trong quá trình ôn tập và tự tin hơn khi đối diện với các bài toán khó khăn trong kỳ thi Đại học môn Toán.